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Abstract

Consider the problem of allocating indivisible objects when agents are endowed

with fractional amounts and rules can assign lotteries. We study a natural general-

ization (to the probabilistic domain) of Gale’s Top Trading Cycles. The latter fea-

tures an algorithm wherein agents trade objects along a cycle—in our new family of

rules, agents now trade probabilities of objects along a cycle. We ask if the attractive

properties, namely efficiency, individual rationality, and strategy-proofness extended in

the stochastic dominance sense, carry over to the Trading-Probabilities-Along-Cycles

(TPAC) rules. All of these rules are sd-efficient. We characterize separately the sub-

class of TPAC rules satisfying the sd-endowment lower bound and sd-strategy-proofness.

Regarding fairness, we follow in spirit to the no-envy in net trade condition of Schmei-

dler and Vind (1972), where the set of allocations satisfying the property essentially

coincides with the set of competitive equilibria, and augment the notion appropriately

for our environment. We further generalize the TPAC family while extending results

on sd-efficiency and the sd-endowment lower bound, and provide sufficient conditions

on parameters for the rules to arbitrarily closely satisfy the sd-no-envy in net trade.
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1 Introduction

A city public housing authority wishes to reshuffle tenants due to demographic changes.

For example, family sizes fluctuate and there could be cases of one person living in a large

apartment while a family of five resides in a small space. In the reshuffling process, the

authority may have various goals including: As much as possible, place tenants where they

want to live while enacting some type of fairness if multiple people apply for the same

apartment. Certain tenants should have sufficient chance to be in certain arrangements e.g.

senior tenants should have sufficient chance to be close to particular resources, or persons

with disabilities have first priority at buildings with accommodations.

New York City provides various forms of public housing for over half a million residents

and recently faced this complicated task.1 It is imaginable that many other cities face similar

problems. How should they design such processes?

We model this problem as one of re-allocating objects (apartments) to agents wherein

agents have preferences over objects, and probabilistic assignment—defined by a lottery over

objects—is possible. To express various guarantees that the authority may wish to respect,

we consider the environment where agents also have rights to certain objects. These rights

are indicated by fractional ownership of the objects and represent a lower bound on their

welfare. We study a large family of probabilistic rules that contain as a special case Gale’s

Top Trading Cycles (TTC), and view them as a natural generalization (Shapley and Scarf,

1974). Our results shed light on tradeoffs regarding efficiency, manipulability, and fairness

when we move to the probabilistic domain.

In deterministic environments, whether objects are initially owned or have attached pri-

orities, TTC is ubiquitous. When each agent owns one and consumes one object, it is the

only efficient, individually rational, and strategy-proof rule (Ma, 1994; Sönmez, 1999; Anno,

2015). Dropping individual rationality, the expanded set of rules may be defined as an out-

come of an algorithm where agents trade along cycles given a particular ownership structure

(Pápai, 2000; Pycia and Ünver, 2017). In school choice where students have affixed priori-

ties as opposed to ownership, TTC can still be used to define an efficient and strategy-proof

mechanism that satisfies further fairness criteria (Abdulkadiroğlu and Sönmez, 2003; Dur,

2013; Dur and Morrill, 2017; Morrill, 2013, 2015a,b).

We ask the following question: Taking the intuition of trading objects along cycles as

a starting point, does the procedure maintain its attractiveness in the more general envi-

ronment of probabilistic assignment? That is, instead of simply trading entire objects, does

trading probabilities result in satisfactory rules? If i owns 0.2 of a and j owns 0.4 of b, then

1Harris, Elizabeth. “Alone in Public Housing, With a Spare Bedroom.” New York Times March 11, 2012.
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it seems entirely reasonable for them to trade their shares if they wish.

To answer, we define a large family of probabilistic rules built upon such a premise. We

start with the Trading-Probabilities-Along-Cycles (TPAC) family, expand to the Generalized

TPAC family, and along the way study their axiomatic properties. Each rule in the TPAC

family is defined by a TTC-like algorithm wherein agents have rights to trade or consume

fractions of objects. Since several agents may have the right to trade fractions of the same

object, each rule also specifies a particular order in which the trading rights are respected.

Different trading rights and priority orders define different rules. Thus, we can define a

family of TPAC rules, each associated with two exogenously given parameters encoding

trading rights and priority orders.

Since agents may be assigned lotteries over objects, we extend their preferences over

objects to preferences over lotteries by means of stochastic dominance, and consider variants

of efficiency, strategy-proofness, and individual rationality appropriate to the probabilistic

environment (Bogomolnaia and Moulin, 2001).2 We indicate these variants with the “sd-”

preface.

Our first contribution is to show to what extent this probabilistic extension of TTC sat-

isfies the probabilistic analog of the original three properties characterizing it. The first two

results are encouraging and straightforward: Each rule in TPAC family satisfies sd-efficiency

(Proposition 1). For each fractional endowment profile, we characterize the subfamily of

TPAC satisfying the sd-endowment lower bound (Proposition 2). Our next result illustrates

a known trade-off between the three properties in rich environments: If there is even a single

agent with positive fractional endowment of more than one object, then there is no rule

in the TPAC family that satisfies the sd-endowment lower bound and sd-strategy-proofness

(Theorem 1). The intuition and success of trading along cycles runs into serious difficulties

when we allow for the least bit of fractional endowment. A direct corollary of this result is

that, within the TPAC family, TTC is the only sd-strategy-proof rule (Corollary 1).

Our second contribution is to show that interesting notions of no-envy are achievable.

For the classical exchange problem, Schmeidler and Vind (1972) proposes a no-envy concept

that accounts for agents’ possibly unequal endowments. At a proposed allocation, each

agent moves from their endowment to their assignment—resulting in a net positive trade

of some objects and negative of others; their no-envy in net trade property requires that

each agent prefers their own net trade to any other’s. They show that the concept is tightly

2We use the ordinal efficiency notion introduced by Bogomolnaia and Moulin (2001). McLennan (2002)

shows that any ordinally efficient allocation maximizes the sum of expected utilities for some profile of vNM

utility indices consistent with the original ordinal preference profile.
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linked with the set of competitive equilibrium allocations.3 We adopt this fairness notion

for probabilistic assignment with endowments. Then, we introduce the Generalized TPAC

family of rules wherein each member operates by allowing agents to appear multiple times

within the order of trading rights; this allows agents to alternate in the order of trading

rights. We show that we can achieve with arbitrary closeness sd-no-envy in net trade, and

provide sufficient conditions on the parameters to do so (Theorem 2). The sd-efficiency and

sd-endowment lower bound properties of TPAC family are also preserved by the Generalized

TPAC family (Propositions 3 and 4).

Our result hints at known connection between TTC algorithms and competitive equilibria.

In the original housing market, the allocation obtained by TTC can be supported as a

competitive equilibrium (Shapley and Scarf, 1974). In school choice where agents have

priorities instead of endowments, a type of competitive equilibrium is unique and coincides

with the (school choice) TTC allocation (Dur and Morrill, 2017). Although we do not define

a competitive notion here, our TTC-inspired mechanisms can satisfy one of its fundamental

no-envy properties, namely no-envy in net trade.

We discuss our results in relation to the probabilistic assignment literature. Hylland and

Zeckhauser (1979) introduces the problem and imagines a pseudo-market mechanism wherein

each agent is endowed with an income and purchases probabilities of objects according to

prices. Note that in contrast to our model, agents do not own fractions of objects as a

primitive. Their mechanism is ex-ante efficient, but is not strategy-proof. While they employ

the intuition of the competitive equilibrium, we conduct a parallel exercise except with TTC.

Unfortunately, there is no rule satisfying sd-efficiency, sd-endowment lower bound, and sd-

strategy-proofness when considering an equal division of the endowments (Athanassoglou

and Sethuraman, 2011). Weaker notions of sd-strategy-proofness (requiring only that any

outcome from a lie does not stochastically dominate the truth) does not recover compatibility

(Aziz, 2018). Both of the previous papers prove their results at particular endowment profiles

e.g. equal division in the former. Within the TPAC family, we confirm that some special

characteristic of the previous endowment profiles, e.g. full support or a type of cycle in the

support, is not driving the incompatibility; rather, it is pervasive, holding for all non-extreme

points (Theorem 1). In light of these impossibilities, the focus turned to fairness and several

papers proposed rules satisfying notions based on equal treatment or elimination of justified

envy (Athanassoglou and Sethuraman, 2011; Echenique et al., 2021; Kesten, 2009; Yılmaz,

2010).

Closest to ours are Aziz (2015) and Yu and Zhang (2021). Additionally allowing indif-

3Each competitive equilibrium allocation satisfies no-envy in net trade, and each strong no-envy in net

trade allocation can be supported as a competitive equilibrium.
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ference in preferences, Aziz (2015) defines a class of rules satisfying sd-efficiency and the

sd-endowment lower bound. Yu and Zhang (2021) define a large class of rules relying on an

algorithm that is procedurally significantly different from ours. The key difference is that in

each step of their algorithm, each object points to each agent that owns positive amount of

it. Subsequently, when each agent points to their most preferred object, the resulting graph

can be complex with multiple overlapping cycles. They encode this information into system

of linear equations and constraints representing feasibility. Within the constraints, there are

additional exogenous parameters that specify for each object and each owner of the object

the “share” that they must use of the object to trade. The assignment at this step is the

maximum solution to the system with constraints. Contrast this with our algorithm, which

is a rather straightforward extension of Gale’s Top Trading Cycles with trading rights and

orders. When restricted to strict preferences, Yu and Zhang (2021) rules are a strict superset

of our TPAC family which in turn is a strict superset of those in Aziz (2015).

We are also related to papers that employ mixtures of TTC rules to recapture fairness.

Interestingly, Random Serial Priority is equivalent to the Core from Random Endowments

(Abdulkadiroğlu and Sönmez, 1998; Knuth, 1996).4 Although equal treatment and no-envy

were the focus of these papers, such mixtures can satisfy the sd-endowment lower bound

for some fractional endowment profile by varying the weights placed on each component

rule. For example, if an agent owns 10% of object a and 20% of object b, then the mixture

can place 10% weight on a rule where the agent initially owns a and 20% weight on a rule

where the agent owns b. Harless and Phan (2019) perform this type of analysis, but for

the environment where each agent partially owns only one object.5 These mixtures are sd-

strategy-proof but not generally sd-efficient ; in contrast, our TPAC rules are sd-efficient but

not generally sd-strategy-proof.

The paper is organized as follows. In Section 2, we define the probabilistic assignment

problem. In Section 3, we define several desirable properties of an allocation rule. In Section

4, we define the TPAC family of rules, and we state properties of this family in Section 5.

Pivoting to fairness, we discuss no-envy in net trade and the Generalized TPAC family in

Section 6. We conclude in the final section.

4This result has been extended to more general families of TTC rules (Bade, 2020; Bogomolnaia and

Moulin, 2001; Carroll, 2014; Che and Kojima, 2010; Lee and Sethuraman, 2011).
5We consider a more general endowment structure than Harless and Phan (2019). In our model, an agent

can own fractions of several different objects; in Harless and Phan (2019), each agent only owns share of one

object, and no two agents own share of the same object. Also, in their paper, they consider rules that are

convex combinations of discrete efficient and group strategy-proof rules (those in Pápai (2000) and Pycia

and Ünver (2017)).
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2 Model

Let O ≡ {a, b, c, . . . } be a finite set of objects, and N ≡ {1, 2, 3, . . . } be a finite set of agents

with |O| = |N | ≥ 3. Each agent i ∈ N has a strict preference relation Ri over objects.

Let R be the set of all strict preference relations, and R ≡ (Ri)i∈N ∈ RN be a preference

profile.

The first difference from the standard object allocation problem with discrete endowment

profiles is that for each object, there may be a set of agents each with some guarantee to

it. To capture this idea, each agent is allowed to own a fractional amount of each object.

Let 4O ≡ {(xo)o∈O ∈ [0, 1]O :
∑

o∈O xo = 1} be the set of possible fractional endowments

defined on O. Each agent i ∈ N has an endowment ωi ≡ (ωio)o∈O ∈ 4O. Let Z ≡ {(xi)i∈N ∈
(4O)N : ∀o ∈ O,

∑
i∈N xio = 1} be the set of all lists of jointly feasible endowments. An

endowment profile ω ≡ (ωi)i∈N ∈ Z specifies an endowment for each agent wherein the total

amount owned for each single object is 1.

Suppose that there are two agents that have the same preferences over the set of objects.

Either one of the agents will be favored against the other one at any deterministic allocation.

That is, fairness becomes a fundamental issue for deterministic allocation rules. In order to

recover some fairness, we instead distribute the objects via lotteries. For each i ∈ N and

each o ∈ O, let xio ∈ [0, 1] be the probability of agent i receiving object o. An assignment for

agent i is a probability distribution (or lottery) over O, xi ≡ (xio)o∈O ∈ 4O. An allocation

is a list x ≡ (xi)i∈N ∈ Z.6 A rule ϕ : RN → Z recommends an allocation for each preference

profile.

We extend the preference relation of each agent, Ri, to preferences over lotteries by means

of first-order stochastic dominance: Let i ∈ N , xi, x
′
i ∈ 4O, and Ri ∈ R. Then, agent i finds

xi at least as good as x′i, xi R
sd
i x′i, if for each o ∈ O,

∑
a∈O:aRio

xia ≥
∑

a∈O:aRio

x′ia.

If there is at least one strict inequality, then xi stochastically dominates x′
i at Ri and

we write xi P
sd
i x′i. Thus, if xi 6= x′i and xi R

sd
i x′i, we have xi P

sd
i x′i. Equivalently, an agent

prefers a lottery to another according to the first-order-stochastic-dominance extension if the

following holds: the former yields higher expected utility than the latter with respect to any

von Neumann Morgenstern utility function compatible with their preference relation over

objects. For each pair of allocations x, x′ ∈ Z, x stochastically dominates x′ at R, if for

6By the Birkhoff-von Neumann Theorem, x can be expressed as a convex combination of permutation

matrices (Birkhoff, 1946; von Neumann, 1953).
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each i ∈ N , xi R
sd
i x′i, and there is j ∈ N such that xj P

sd
j x′j.

3 Axioms

The first requirement is that the rule does not waste resources.

Sd-efficiency: (Bogomolnaia and Moulin, 2001) For each R∈ RN , there is no x ∈ Z such

that x stochastically dominates ϕ(R) at R.

The second requirement is that the rule respects ownership. The most natural way is to

make each agent at least as well off as they would be by consuming their own endowment.

Sd-endowment lower bound: For each R∈ RN , and each i ∈ N ,

ϕi(R) Rsd
i ωi.

The last is the ubiquitous incentive compatibility requirement in the design of allocation

rules: the assignment that an agent receives when they tell the truth is at least as good as

the assignment that they receive when they lie.

Sd-strategy-proofness: For each i ∈ N , each R ∈ RN , and each R′i ∈ R,

ϕi(R) Rsd
i ϕi(R

′
i, R−i).

In Section 6 we also consider fairness properties, and we delay discussion until that

section.

Remark 1. (Athanassoglou and Sethuraman, 2011) At the equal endowment profile, there is

no rule that satisfies sd-efficiency, sd-endowment lower bound, and sd-strategy-proofness.

They show that impossibility holds at the equal endowment profile. Aziz (2018) proves a

similar incompatibility for a weakening of sd-strategy-proofness, also at a particular endow-

ment profile. We explore general endowment structures in the following section.

4 Trading-Probabilities-Along-Cycles Family of Rules

In this section, we define a large class of probabilistic rules that extends the intuition under-

lying TTC. Each rule is parametrized by 1) the amount of each object that each agent has
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the right to trade, and 2) for each object, the order in which agents have the right to trade

their share of the object. Once this ownership structure is defined, the usual TTC step can

be used. As the algorithm proceeds, the current owner of each object updates according to

the priority parameter as the right to trade expires.

More formally, for each i ∈ N , and each o ∈ O, let rio ∈ [0, 1] be the trading right

of agent i for object o, and ri ≡ (rio)o∈O ∈ 4O be the trading right of agent i. Let

r ≡ (ri)i∈N ∈ Z be a trading rights profile. For each o ∈ O, let σo : N → {1, . . . , |N |} be a

bijection and the priority order for object o. For each i ∈ N , σo(i) defines the position of

agent i in the priority order for o. Let σ ≡ (σo)o∈O be an object priority profile.

We refer to each pair (r, σ) as a trading-probabilities-along-cycles (TPAC) parameter.

For each pair (r, σ), let ϕ(r,σ) be the associated Trading-Probabilities-Along-Cycles rule.7

Finally, for each preference profile R ∈ RN , we use the following algorithm to compute

ϕ(r,σ)(R):

Step 1: Construct a weighted, directed graph as follows: The set of vertices is the set

of agents and objects. For each agent i, there is a directed edge with weight 1 to their

most preferred object according to Ri. For each object o, let j = σ−1
o (1) be the highest

priority agent for o, and let there be a directed edge with weight rjo from o to j. At

least one cycle exists. For each cycle, there is an edge with minimum weight w among

edges in the cycle. For each agent i in the cycle, 1) assign i this amount w of the object

o for which there is an edge from i to o, and 2) decrease by this amount w i’s trading

right of the object o′ in the cycle for which there is an edge from o′ to i .

For each s ≥ 1, let rs be the updated trading rights profile at the end of Step s.

Step s: Construct a weighted, directed graph as follows: The set of vertices is the set

of 1) agents who have not been assigned a total amount of 1 of objects, and 2) objects

for which there is i ∈ N with rs−1
io > 0. For each agent i in the graph, there is a

directed edge with weight
∑

o∈O r
s−1
io from i to their most preferred object in the graph

according to Ri. For each object o in the graph, let j be the highest priority agent

with positive trading right of o, that is, rs−1
jo > 0 and for each other j′ in the graph

7We distinguish between the endowment profile ω and the trading rights parameter r used by the rule for

several reasons. First, the family can be defined independent of endowment information and thus used in

situations without the latter. Second, when we generalize upon them in Section 6, we will also define rules

operationalized on two parameters that similarly reflect the concepts of trading rights and an associated

order. To be consistent across the two families and highlight the parallel intuition, we explicitly define both

parameters in both families. Finally, the trading rights in the generalized family is a different mathematical

object than an endowment profile.
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with rs−1
j′o > 0, σo(j) < σo(j

′). Let there be a directed edge with weight rs−1
jo from o to

j. At least one cycle exists. For each cycle, there is an edge with minimum weight w

among edges in the cycle. For each agent i in the cycle, 1) assign i this amount w of

the object o for which there is an edge from i to o, and 2) decrease by this amount w

i’s trading right of the object o′ in the cycle for which there is an edge from o′ to i .

Since there are finite numbers of agents and objects, the algorithm ends in finitely many

steps. In the end, each agent is assigned a lottery and each object is exhausted. �

The TPAC family (and its subsequent generalization) can be seen as a way to select among

possibly overlapping trading cycles when each object may have multiple, partial owners and

points to each of them. The priority order and trading rights of objects determine the order

and extent to which cycles are chosen.

Next, we illustrate the algorithm.

Example 1. Let O = {a, b, c} and N = {1, 2, 3}. Let R ∈ RN and (r, σ) be a TPAC

parameter as follows. We apply the algorithm to compute ϕ.

R1 R2 R3 σa σb σc r a b c

a a b 1 1 2 1 0.3 0.5 0.2

b c a 2 3 3 2 0.5 0.4 0.1

c b c 3 2 1 3 0.2 0.1 0.7

Step 1 Step 2

1

1

1

0.1

0.3

0.5

b

c
2

3

1

a a

1

3

2
c

b

0.5

0.1

1

0.7

1

0.5
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Step 3 Step 4

0.2

0.5

0.7

1

0.5

b

c
2

3

1

a

0.1

1

3

2

c

b

0.3

0.1

0.8

0.5

0.5

Step 5 Step 6

0.7

0.1

0.2

0.4

0.8

b

c

2

3

1

c

b

0.7

0.2

0.7

1

3

2
0.4

0.4

Step 7 Step 8

0.2

0.3

0.3c

3

1 1

c

0.2 0.2

In Step 1, the only cycle is formed by {a, 1} with minimum weight equal to 0.3. Agent

1 receives 0.3 of a; their trading right of a decreases by 0.3 and is updated to 0. In Step

2, the only cycle is formed by {a, 2} with minimum weight equal to 0.5. Agent 2 receives

0.5 of object a; their trading right of a decreases by 0.5 and is updated to 0. In Step 3, the

only cycle is formed by {a, 3, b, 1} with minimum weight equal to 0.2. Agent 1 receives 0.2

of a; their trading right of b decreases by 0.2 and is updated to 0.3. Agent 3 receives 0.2 of

b; their trading right of a decreases by 0.2 and is updated to 0. Object a is fully exhausted
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and removed from the graph. The algorithm proceeds similarly and terminates at Step 8.

The allocation selected by ϕ(r,σ) at the preference profile R is as follows:

ϕ(r,σ)(R) a b c

1 0.5 0.3 0.2

2 0.5 0 0.5

3 0 0.7 0.3

Remark 2. Suppose that each agent owns exactly one object. That is, ω ∈ Z is such that

for each i ∈ N and each o ∈ O, ωio ∈ {0, 1}. Now, for each TPAC parameter (r, σ) with

r = ω, ϕ(r,σ) coincides with TTC using ω as the endowment profile.

5 Properties of the TPAC Family

Encouragingly, each TPAC rule satisfies several desirable properties.

First, we show that for each preference profile, no allocation stochastically dominates the

allocation chosen by a TPAC rule.

Proposition 1. Each TPAC rule satisfies sd-efficiency.

Proof. Let (r, σ) be a TPAC parameter. Suppose by contradiction that there is R ∈ RN

such that there is an allocation that stochastically dominates ϕ(r,σ) at R. Let x ≡ ϕ(r,σ)(R).

By Lemma 3 of Bogomolnaia and Moulin (2001), there is a sequence of agents (relabelling

if necessary) 1, . . . , k and objects o1, . . . , ok such that for each i ∈ {1, . . . , k̄}, xioi+1
> 0 and

oi Ri oi+1 mod k̄.

Consider agent 1. Let s1 be the first step in the algorithm for ϕ(r,σ) that 1 forms a directed

edge to o2. There is such a step as x1o2 > 0. This implies that each object o ∈ O with o P1 o2

is no longer available (mass 1 of o has been assigned to various agents); in particular, o1 is

no longer available. Furthermore, this implies that at Step s1, agent 2 forms a directed edge

at o2 or an object preferred to o2 with respect to R2.

Let s2 be the first step in the algorithm that 2 forms a directed edge to o3. By construction

of R2, this implies that o2 is no longer available, and subsequently s2 > s1.

In general, for each k ∈ {1, . . . k̄}, let Step sk be the first step that k forms a directed

edge to ok+1. Following the reasoning above, for each k ∈ {1, . . . k̄}, sk > sk−1.

At Step sk̄, there is a directed edge from k̄ to o1. This contradicts the fact that o1 is no

longer available.
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Next, we show that a TPAC rule assigns each agent a lottery that they find at least as

desirable as their endowment if and only if the amount of each object that an agent has the

right to trade is at least as large as the amount of each object that they own.

Proposition 2. The TPAC rule ϕ(r,σ) satisfies the sd-endowment lower bound if and only if

r = ω.

Proof. Let R ∈ RN , (r, σ) be a TPAC parameter, and x ≡ ϕ(r,σ)(R).

Let (r, σ) be such that r = ω, and suppose that for agent i ∈ N , Ri = o1o2 . . . ok where

k = |O|.8 By definition of a TPAC rule, we have

xio1 ≥ rio1

xio1 + xio2 ≥ rio1 + rio2
...

...
...

xio1 + xio2 + . . .+ xiok = rio1 + rio2 + . . .+ riok = 1.

The first inequality follows from the fact that agent i consumes their own trading right of

object o1 as well as an additional amount from trading away other objects. The subsequent

inequalities are similar. Hence, ϕ(r,σ) satisfies the sd-endowment lower bound.

Now, let ϕ(r,σ) satisfy the sd-endowment lower bound. Suppose by contradiction that

r 6= ω. Then there is an agent i ∈ N and an object o ∈ O such that rio < ωio. Let R ∈ RN

be defined as follows: For each i ∈ N and each o′ ∈ O, o Ri o
′. By definition of a TPAC

rule, for each i ∈ N , xio = rio. Since xio < ωio, xi does not stochastically dominate ωi at

preference relation Ri, in contradiction to ϕ(r,σ) satisfies the sd-endowment lower bound.

Next, we check the compatibility of the sd-endowment lower bound and sd-strategy-

proofness.

Theorem 1. Suppose that there is an agent with positive fractional endowment of more than

one object. Then, no TPAC rule satisfies the sd-endowment lower bound and sd-strategy-

proofness.

The proof of Theorem 1 is provided in Appendix A. We first establish several lemmas

showing that certain classes of TPAC parameters are not sd-strategy-proof. For example, if

(r, σ) is such that there are two agents i and j with first priority for objects a and b, and both

have positive probability of another object c, then ϕ(r,σ) is not sd-strategy-proof. We then

generalize this to all possible parameters by directly applying the lemmas, or by constructing

an infinite sequence of agents—contradicting finiteness of N .

8The preferences of agent i that prefers o1 to o2, o2 to o3 and so on is written as Ri = o1o2 . . . ok.
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Thus, a TPAC rule wherein the trading rights parameter r is in the simplex is sd-strategy-

proof if and only if each agent owns one object.

Corollary 1. TTC is the only sd-strategy-proof TPAC rule.

With regards to incentive compatibility, we are able to give a definitive but disappointing

answer to the question of whether or not trading along cycles gives rise to satisfactory rules.

6 Fairness and TPAC

In this section we turn our focus to fairness amongst the agents. We adopt the notion

of Schmeidler and Vind (1972) wherein the no-envy concept of Foley (1967) is defined for

the classical exchange problem to accommodate inequalities in agents’ initial endowments.

We follow in spirit and study a version of it in the probabilistic assignment problem with

endowments. Let an agent’s net trade be the vector defined by their assignment less their

endowment. The condition of Schmeidler and Vind (1972) requires that agent i should not

prefer agent j’s net trade over their own.

In both classical exchange and our environment, however, adding another agent’s net

trade to one’s endowment may result in a point outside of their consumption space. For

example, if i has 0.2 endowment of a, and j’s net trade of a is −0.4, then applying j’s net

trade to i’s endowment gives i −0.2 of a—the property would not be well-defined. Schmeidler

and Vind (1972) take the approach of altogether dropping the no-envy requirement in this

scenario; thus, they invoke no-envy when net trades are feasible, and otherwise not.

Our notion takes a more progressive approach. In the above scenario, note that if we scale

back the net trade of j by 1
2
, then applying it to i’s endowment can result in an assignment.

This fraction 1
2

can be seen as a normalization that accounts for the inequalities in agents’

initial endowments, and, further, guarantees comparability. More generally, the closer i

and j’s endowment is, the closer the normalization is to 1, and so no-envy is applied with

greater strength. We thus capture the spirit of the Schmeidler and Vind (1972) condition:

an agent never prefers any other agent’s normalized net trade to their own. In summary, we

conceptually strengthen parts of their property while weakening others. The key intuition is

that their binary approach fully compares some but ignores the remaining net trades, while

we take all net trades into account by monotonic adjustment.

In this section, our main result is to show that with a generalization of the TPAC family,

it is possible to achieve arbitrarily closely this property, and we give sufficient conditions to

do so.
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6.1 No-Envy in Net Trade

For each agent i ∈ N and each assignment xi ∈ 4O, let i’s net trade at xi be ti(xi) =

xi − ωi. When the allocation is clear, we denote ti(xi) by ti. For each i, j ∈ N , and each

allocation x ∈ Z, let i’s j-net trade at x be xji ∈ 4O such that xji = ωi + α(ωi, ωj)tj where

α(ωi, ωj) = mino∈O:ωjo>0{1, ωio

ωjo
}.9 As mentioned, the adjustment of α(ωi, ωj) of j’s trade

vector ensures that i’s j-net trade at x is within their consumption space. For brevity, we

denote α(ωi, ωj) by α(i, j).

Sd-no-envy in net trade: For each R∈ RN , and each i, j ∈ N ,

ϕi(R)Rsd
i ϕ

j
i (R).

When two agents have the same endowment, this property is the sd-no-envy condition.

If, in addition, the two agents have the same preference over objects, then the property

requires that the two agents receive the same assignment.

We define the approximate version of sd-no-envy in net trade. Let ε ≥ 0 be the relaxation

on each inequality constraint of the property.

ε-Sd-no-envy in net trade: For each R∈ RN , each i, j ∈ N , and each o ∈ O,

ε+
∑
b: bRi o

ϕib(R) ≥
∑
b: bRi o

ϕjib(R).

We make several remarks about the property. First, it embodies a natural “monotonicity

of comparison”: If two agents have the same traits, then we should treat them similarly; if

they are very different, then it is unclear on how to compare their outcomes. If two agents i

and j have the same endowment, then α(i, j) = 1 and the property directly compares their

net trades. As the distance between their endowments increase, α(i, j) decreases and the

property is more agnostic about comparison of their net trades. Second, it leaves room for

further notions of fairness. For example, suppose that both i and j both top-rank a “basic

necessity” object a, but i is endowed with much more of a. Both i and j would like to trade

the same amount of b for c. The designer favors j in this aspect, because of j’s disadvantage

of having less a. Lastly, from an informational standpoint, α is parsimonious—it depends

on only ω and can be considered independent of the rule, allocation, or preferences at hand.

Consider alternatively allowing the net trade normalization to vary across ω and allo-

cations. This may require, for example, agents with different endowments to nevertheless

9We show that xji is indeed in 4O in Appendix B.
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directly compare net trades whenever feasible. Let this normalization be called α̂.10 Con-

sider the three points in the previous paragraph. The monotonicity of comparison is no

longer present and may, in fact, be reversed: at some allocations, agents i and j with similar

endowments have a weak comparison of net trades (α̂(ωi, ωj, x) is low), while agents i and

k with different endowments have a direct comparison (α̂(ωi, ωk, x) is high). The notion of

fairness adjusting for basic necessities may not be possible. For example, the alternative

property may require that i and j trade exactly the same amounts of b and c, because that

net trade is feasible for both. Lastly, α̂ varies substantially across allocations.

We mention that Yu and Zhang (2021) consider an interesting and related but logically

independent notion. They directly relax the no-envy stochastic dominance constraints, al-

lowing for more violation as two agents’ endowments increasingly differ. Their bounded envy

requires that for each pair of agents i and j, envy is bounded by the aggregate difference

between their endowments for objects that i has less of than j.11 Conceptually, they com-

pare final allocations, but adjust the no-envy constraint; in the reverse order, we adjust net

trades, then compare the resulting hypothetical assignments.

6.2 The Generalized TPAC Family

In this section, we introduce a natural generalization of the TPAC family. Recall that in the

TPAC rule associated with (r, σ), the parameter σ is a priority order of the agents indicating

when an agent has the right to trade an object. Notice that each agent appears exactly once

in this order. We now allow for agents to appear multiple times and specifying, for each time

an agent appears, the amount of trading right they have. For example, if both i and j each

own 0.3 of a, then TPAC requires that either i or j exercise full trading rights of a first, while

now, i and j can alternate three times exercising 0.1 trading right of a. The mechanism can

thus procedurally favor a particular agent by setting more of their trading rights first, or

equalize across agents by repeatedly alternating amongst them smaller trading rights.12

10Formally, for each i, j ∈ N , each endowment ω ∈ Z, and each allocation x ∈ Z, let α̂(ωi, ωj , x) =

maxβ∈[0,1]: ωi+βtj(xj)∈4O β. Then, use α̂ in place of α in the definition of sd-no-envy in net trade.
11The following example demonstrates the two properties’ independence. Let O = {a, b, c, d, e}, ωi =

(0.1, 0.2, 0.2, 0.5, 0), and ωj = (0.4, 0.4, 0.2, 0, 0), Ri = Rj : e, a, b, c, d. Note that α(i, j) = 1
4 , and the bound

of Yu and Zhang (2020) is 0.5. The assignment where xi = (0.1, 0, 0.2, 0.5, 0.2) and xj = (0.1, 0, 0.2, 0, 0.7)

satisfy both properties when restricted to i and j. The assignment where xi = (0.1, 0.2, 0.2, 0.5, 0) and

xj = (0, 0.4, 0.2, 0, 0.4) satisfies their bounded envy restricted to i and j, but not our sd-no-envy in net trade.

The assignment where xi = (0.1, 0, 0.2, 0.5, 0.2) and xj = (0, 0, 0.2, 0, 0.8) satisfies sd-no-envy in net trade

restricted to i and j, but not bounded envy.
12The spirit of our mechanism is reminiscent to that of the family of Probabilistic Serial rules of Bogomol-

naia and Moulin (2001) wherein “eating speeds” of the agents can be varied. Their environment, though, is
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More formally, for each o ∈ O, let p̄o ∈ N be the total number of positions that comprises

the finite priority sequence of object o, τo : {1, . . . , p̄o} → N be a mapping from positions

to agents such that no consecutive positions are assigned the same agent, i.e. for each

p ∈ {1, . . . , p̄o− 1}, τo(p) 6= τo(p+ 1), and qo : {1, . . . , p̄o} → (0, 1] be a trading rights list for

o specifying for each position an amount such that
∑

p∈{1,...,p̄o} qo(p) = 1. Finally, let (q, τ)

be such that for each i ∈ N ,
∑

o∈O
∑

p∈{1,...,p̄o}: τo(p)=i qo(p) = 1.

We refer to each pair (q, τ) as a Generalized TPAC parameter. For each pair (q, τ), let

ϕ(q,τ) be the associated Generalized TPAC rule. For each R ∈ RN , we use the following

algorithm to compute ϕ(q,τ)(R):

Step 1: Construct a weighted, directed graph as follows: The set of vertices is the set

of agents and objects. For each agent i, there is a directed edge with weight 1 to their

most preferred object according to Ri. For each object o, agent τo(1) is the highest

priority agent. Let there be a directed edge with weight qo(1) from o to τo(1). At least

one cycle exists. For each cycle, there is an edge with minimum weight w among edges

in the cycle. For each agent i in the cycle, 1) assign i this amount w of the object o for

which there is an edge from i to o, and 2) decrease by this amount w agent i’s trading

right of the object o′ in the cycle for which there is an edge from o′ to i.

At the end of each step, we record all trades, updated trading rights, and the current

agent in each object’s priority sequence.

Let s ≥ 1. At the end of Step s, let ts = (tsio)i∈N,o∈O ∈ [−1, 1]N×O record the profile of

trades executed, for each o ∈ O, q̂so : {1, . . . , p̄o} → [0, 1] be the updated trading rights,

and ps = (pso)o∈O ∈
∏

o∈O{1, . . . , p̄o} be the updated positions where: If i ∈ N is not in

a cycle at Step s, then for each o ∈ O, tsio = 0, and if in addition i = τo(p
s−1
o ) (where

for each o ∈ O, p0
o = 1), then pso = ps−1

o , and

q̂so(p) =

0 if p < pso, and

qs−1
o (p) if p ≥ pso,

(where q̂0
o = qo). If i ∈ N is in a cycle at Step s, then let o ∈ O be the object such that

there is an edge from i to o, o′ ∈ O be the object in the cycle such that there is an edge

from o′ to i; if o = o′, then tsio = 0, and otherwise, let tsio be the minimum weight among

all edges in the cycle, and tsio′ = −tsio. In addition, there are two subcases to when i is

in a cycle: −tsio′ = q̂s−1
o′ and −tsio′ < q̂s−1

o′ . If −tsio′ = q̂s−1
o′ , then i has exhausted their

one without initial endowments and hence features no element of trading between the agents.
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trading right of o′ at position ps−1
o′ , so pso′ = ps−1

o′ + 1, i 6= τo(p
s
o′), and

q̂so′(p) =

0 if p < pso′ , and

qs−1
o′ (p) if p ≥ pso′ .

If −tsio′ < q̂s−1
o′ , then i has not exhausted their trading right of o′ at position ps−1

o′ , so

pso′ = ps−1
o′ , and q̂so′

q̂so′(p) =


0 if p < pso′ ,

q̂s−1
o′ (p) + tsio′ if p = pso′ , and

qs−1
o′ (p) if p > pso′ .

Step s: Construct a weighted, directed graph as follows: The set of vertices is the set

of 1) agents i such that there is o ∈ O and p ≥ ps−1
o such that τo(p) = i , and 2) objects

o such that q̂s−1
o (ps−1) > 0. For each agent i in the graph, there is a directed edge with

weight 1 −
∑

o∈O
∑

p<ps−1
o :τo(p)=i qo(p) −

∑
o∈O:τo(ps−1

o )=i qo(p
s−1
o ) − q̂s−1

o (ps−1
o ) from i to

their most preferred object in the graph according to Ri.
13 For each object o in the

graph, there is a directed edge with weight q̂s−1
o (ps−1

o ) from o to τo(p
s−1
o ). At least one

cycle exists. For each cycle, there is an edge with minimum weight w among edges in

the cycle. For each agent i in the cycle, 1) assign i this amount w of the object o for

which there is an edge from i to o, and 2) decrease by this amount w i’s trading right

of the object o′ in the cycle for which there is an edge from o′ to i .

The algorithm ends when there are no more agents. �

In comparison to the TPAC family, this generalization allows significantly more flexibility

to alternate between agents’ trading rights. Even so, for both families, the finiteness of the

parameters precludes rules from satisfying full sd-no-envy in net trade. For small ε, it is

impossible to achieve ε-sd-no-envy in trade within the TPAC family—if two agents compete

for an object o by trading away object o′, the fact that one agent always has trading rights

of o′ before another indicates a clear advantage to the prioritized agent.14

13This weight is 1 less the total amount of trading rights across all objects that i has used.
14For example, let O = {a, b, c}, N = {1, 2, 3}, ω = ((0.4, 0.4, 0.2), (0.4, 0.4, 0.2), (0.2, 0.2, 0.6)), R1 =

R2 : abc, and R3 : acb. In the algorithm for each TPAC rule, each agent first consumes their own amount

of a. Only b and c remain. If 1 has trading right of c before 2 does, then 1 and 3 eventually trade

their c and b (and similarly so if 2 has an earlier trading right). Thus, any TPAC rule prescribes either

((0.4, 0.6, 0), (0.4, 0.4, 0.2), (0.2, 0, 0.8)) or ((0.4, 0.4, 0.2), (0.4, 0.6, 0), (0.2, 0, 0.8)), and for each ε < 0.2, vio-

lates the ε-sd-no-envy in net trade.
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We will show that it is possible to achieve arbitrarily closely sd-no-envy in net trade in

our new family.

We first remark that sd-efficiency and the sd-endowment lower bound properties are

inherited by this larger family.

Proposition 3. Each Generalized TPAC rule is sd-efficient.

Proposition 4. The Generalized TPAC rule ϕ(q,τ) satisfies the sd-endowment lower bound if

and only if for each i ∈ N , and each o ∈ O,
∑

p∈{1,...,p̄o}: τo(p)=i qo(p) = ωio.

The proofs for the two statements are identical to Propositions 1 and 2, and we omit

them here.

6.3 Sufficient Conditions for Fairness

We introduce a condition on the parameter (q, τ). Intuitively, it embodies the idea that no

agent is ever “too far ahead” of another agent in terms of cumulative trading rights for each

object. Let o be an object, and p ∈ {1, . . . , p̄o} be a position in o’s priority sequence. Up until

position p, we have alternated between various agents specifying who has a right to trade

object o as well as how much. For a pair of agents i and j, we can compare the cumulative

amount of trading rights each has exercised by the time we have arrived at position p. The

condition requires that the difference between these cumulative amounts is bounded by ε,

given that both agents have trading rights of o greater than these amounts. Put another

way, no agent gets too far ahead of another in terms of trading rights.

We now present the condition formally. Let (q, τ) be a Generalized TPAC parameter,

and for each i ∈ N , and each o ∈ O, p̄io ∈ {1, . . . , p̄o} be the last position in which i appears

in τo.

Parameter (q, τ) satisfies ε-no-ahead if for each pair i, j ∈ {h ∈ N : ∃p ∈ {1, . . . , p̄o} s.t.

τo(p) = h}, each o ∈ O, and each p′ < p̄io,

ε+
∑

p≤p′: τo(p)=i

qo(p) ≥
∑

p≤p′: τo(p)=j

qo(p).

We now state the main result of this section: With the Generalized TPAC rules we can

achieve arbitrarily closely our sd-no-envy in net trade fairness criterion. For each level of

approximation, we provide sufficient conditions on the parameter (q, τ) for the associated

Generalized TPAC rule to satisfy it. The condition permits a straightforward construction

of a class of fair rules.
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Theorem 2. If (q, τ) satisfies ε-no-ahead, then ϕ(q,τ) satisfies ε|O|-sd-no-envy in net trade.

We prove the theorem in Appendix B.

7 Conclusion

Trading probabilities along cycles is an intuitive extension of the successes in the discrete

domain to the probabilistic. Our results demonstrate, though, that the difficulties between

efficiency and manipulability appear. If there is even one agent who owns positive share of

two different objects, then none of our sd-efficient rules satisfies the sd-endowment lower

bound and sd-strategy-proofness together; only in the special case of discrete endowments do

we have compatibility.

On the other hand, we show that an interesting notion of fairness is possible. In the

classic exchange economy, no-envy in net trade essentially characterizes the Competitive

Equilibrium allocations. To our knowledge, our paper is the first to consider the property in

the probabilistic domain, and we establish sufficient conditions on our rule’s parameters to

arbitrarily closely achieve it.

We state some open questions. While we show that there are rules satisfying sd-efficiency,

the sd-endowment lower bound, and ε-sd-no-envy in net trade, can the same be shown when

the latter is replaced with sd-no-envy in net trade? Next, our adjustment of net trades

guarantees agents’ comparisons are well-defined, but a weaker adjustment is possible and

results in a strengthening of the sd-no-envy in net trade. This naturally posits the question

of whether there are mechanisms satisfying this stronger notion. Finally, our algorithms

and those of Yu and Zhang (2021) are procedurally significantly different, obfuscating their

relationship. Future work may clarify the precise relationship between the two families.
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Appendix A: Proof of Theorem 1

We first state several useful lemmas. They show that certain classes of TPAC parameters

(r, σ) result in manipulable rules. We then show a special case of Theorem 1 wherein some

agent owns three or more objects. Lastly, we finish with the proof of Theorem 1.

Lemma 1. Let (r, σ) be a TPAC parameter. If there are i, j ∈ N and a, b, c ∈ O such that

1. ria, ric > 0,

2. rja, rjb > 0, and

3. σ satisfies either below:

(a) σc(i) = 1 and σb(j) = 1, or

(b) σc(i) = σb(i) = 1, and σb(j) = 2,

then ϕ(r,σ) is not sd-strategy-proofness.

Proof. Let i = 1, j = 2, and (a) be true. The proof for (b) is similar. LetR≡ (R1, R−1) ∈ RN

and R′≡ (R′1, R−1) ∈ RN be as follows. 15

R1 R2 R−{1,2} R′1 R2 R−{1,2}

b a a a a a

a c b b c b

c b c c b c
...

...
...

...
...

...

We compute the total amount of a and b that agent 1 receives at these two preference

profiles.

First, we compute ϕ
(r,σ)
1a (R) + ϕ

(r,σ)
1b (R). By sd-efficiency, ϕ

(r,σ)
1a (R) = 0. Thus, the

question reduces to how much of b does 1 get? In the first step of the algorithm, agent 1

points to b and each other agent points to a. Note that this remains the same as long as a

and b are not exhausted. From the first step until the step that object a is exhausted, each

cycle falls into one of the following three cases:

Case 1: a points to j ∈ N \ {1}. The only cycle is formed by {a, j}. Since j points to

a with weight 1, and a points to j with weight rja, agent j receives rja amount of a.

On the other hand, agent 1 receives nothing.

15For each i, j ∈ N , R−{i,j}= abc . . . denotes the profile obtained from R∈ RN by deleting its i-th

component Ri and j-th component Rj where for each k ∈ N \ {i, j}, we have Rk= abc . . ..
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Case 2: a points to 1, and b points to j ∈ N\{1}. The only cycle is formed by

{a, 1, b, j}, Since
∑

o∈O rio = 1,
∑

i∈N rio = 1, and r1c > 0, we have

r1a < 1− r1b =
∑

j∈N\{1}

rjb.

Therefore, 1 trades a with various agents in return for b until they receive r1a amount

of b.

Case 3: b points to 1. The only cycle is formed by {b, 1}. Since agent 1 points to b

with weight at least 1 − r1a > r1b and b points to 1 with weight r1b, agent 1 receives

r1b amount of b.

Note that at any particular step, multiple cycles may occur (specifically a Case 1 cycle

and a Case 2 cycle), but each cycle nevertheless falls into one of the three cases. Since

r1a < 1 − r1b =
∑

j∈N\{1} rjb, object a is exhausted first. After a is exhausted, each agent

j ∈ N\{2} points to b and 2 points to c. Similarly as before, the following three cases occur

in different orders.

Case 1′: b points to j ∈ N\{2}. The only cycle is formed by {b, j}. A special case

where j = 1 is analyzed above in Case 3.

Case 2′: b points to 2, and c points to j ∈ N\{2}. The only cycle is formed by

{b, 2, c, j}.

Case 3′: c points to 2. The only cycle is formed by {c, 2}, and therefore agent 1 receives

nothing.

We see that agent 1 receives r1a + r1b amount of b. Do they get any positive amount of b

from the trade that occurs in Case 2′?

First, we have to determine how much of trading right for b that 2 has when Case 2′

occurs. In Case 2, agent 2 may have traded some of their trading right for object b with

agent 1 in return for object a. Moreover, by the time {a, 1, b, 2} forms a cycle in Case 2,

agent 1 may have traded their trading rights for object a with agents having a higher priority

for b than agent 2 in return for object b. That is, by the time this occurs, agent 1 will have

had

max

0, r1a −
∑

j∈N\{1}:σb(j)<σb(2)

rjb

 = r1a
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amount of trading right for object a left. The equality holds from the fact that σb(2) = 1

(or in the case of (b), σb(1) = σb(2) − 1 = 1). Then, in case 2, agent 2 trades their trading

right for b with agent 1’s remaining share of object a. Therefore, agent 2 has

max

0, r2b −max{0, r1a −
∑

j∈N\{1}:σb(j)<σb(2)

rjb}

 = max {0, r2b − r1a}

amount of trading right left for object b.

By the time {b, 2, c, 1} forms a cycle in Case 2′, agent 2 may have traded his remaining

trading right for object b with agents having a higher priority for c than agent 1 in return

for object c. That is, by the time this occurs, agent 2 will have had

max
{

0,max
{

0, r2b −max{0, r1a −
∑

j∈N\{1}:σb(j)<σb(2) rjb}
}
−
∑

j∈N\{2}:σc(j)<σc(1) rjc

}
= max {0, r2b − r1a}

amount of trading right for object b left. Finally, during this case, agent 1 receives

min
{
r1c,max

{
0,max

{
0, r2b −max{0, r1a −

∑
j∈N\{1}:σb(j)<σb(2) rjb}

}
−
∑

j∈N\{2}:σc(j)<σc(1) rjc

}}
= min {r1c,max{0, r2b − r1a}}

(1)

amount of b.

Since r2b ≤ 1 − r2c =
∑

j∈N\{2} rjc, the total trading right of c of agents pointing to b

is greater than the 2’s trading right of b, and agent 1 cannot obtain any more b from 2.

Furthermore, since each j ∈ N\{1, 2} receives their own rjb, 1 cannot get any more b. To

summarize, ϕ
(r,σ)
1a (R) + ϕ

(r,σ)
1b (R) is equal to r1a + r1b + (1).

Next, we compute ϕ
(r,σ)
1a (R′1, R−1) + ϕ

(r,σ)
1b (R′1, R−1). In the first part of the algorithm,

each agent j ∈ N points to a with weight 1, and a successively points to agents according

to σa, for each j ∈ N , with weight rja. Thus, each agent j ∈ N , receives rja amount of a.

Object a is exhausted after each agent receives their share of a. Then, in the next stage of

the algorithm, each j ∈ N\{2} points to b with weight 1− rja and 2 points to c with weight

r2c. From the step after a is exhausted until the step that object b is exhausted, each cycle

falls into one of the following three cases:
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Case 1′′: b points to j ∈ N\{2}. The only cycle is formed by {b, j}. Since j ∈ N \ {2}
points to b with weight at least 1−rja ≥ rjb, and j points to b with rjb, agent j receives

rjb amount of b. In particular, agent 1 receives r1b amount of b.

Case 2′′: b points to 2, and c points to j ∈ N\{2}. The only cycle is formed by

{b, 2, c, j}.

Case 3′′: c points to 2. The only cycle is formed by {c, 2}, in which agent 2 receives

r2c amount of c. Thus, agent 1 receives nothing.

We see that agent 1 receives r1a amount of a, and r1b amount of b. Do they get any

positive amount of b from the trade that occurs in Case 2′′?

First, we have to determine how much of trading right for b that agent 2 has when

{b, 2, c, 1} forms a cycle in Case 2′′. By the time this occurs, agent 2 may have traded their

trading rights for object b with agents having a higher priority for object c than agent 1 in

return for object c. Therefore, by this time, agent 2 has

max

0, r2b −
∑

j∈N\{2}:σc(j)<σc(1)

rjc

 = r2b

amount of trading right for object b left. Hence, in this case, agent 1 receives

min

r1c,max

0, r2b −
∑

j∈N\{2}:σc(j)<σc(1)

rjc


 = min{r1c, r2b} (2)

amount of b. Since r2b ≤
∑

j∈N\{2} rjc and each j ∈ N\{1, 2} receives rjb amount of b, 1

cannot get anymore of b. To summarize, ϕ
(r,σ)
1a (R′1, R−1) + ϕ

(r,σ)
1b (R′1, R−1) = r1a + r1b + (2).

By sd-strategy-proofness,

ϕ
(r,σ)
1a (R′1, R−1) + ϕ

(r,σ)
1b (R′1, R−1) = ϕ

(r,σ)
1a (R1, R−1) + ϕ

(r,σ)
1b (R1, R−1).

Equivalently, (1) is equal to (2).

If r2b − r1a ≤ 0, then (1) = 0 < min{r1c, r2b} = (2). Thus, we have r2b − r1a > 0.

Furthermore r1c ≤ r2b − r1a, otherwise (1) < (2). Since r1a > 0, we have r1c < r2b.

Note that both agents 1 and 2 own positive amount of a, and each owns positive amount

of c and b, respectively. Consider another preference profile that permutes the roles of

the agents 1 and 2, and objects b and c. Following symmetric reasoning, we can derive

r2b < r1c.

Lemma 2. Let (r, σ) be a TPAC parameter. If there are i, j ∈ N , and a, b, c ∈ O such that

σa(i) = σb(i) = σc(j) = 1 and ria + rib > rjc > 0, then ϕ(r,σ) is not sd-strategy-proof.
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Proof. Let R ∈ RN be as below.

Ri Rj R−{i,j}

c a a

a b c

b c
...

...
...

Then, ϕ
(r,σ)
ia (R)+ϕ

(r,σ)
ic (R) = ria+ric+min{rib,max{0, rjc−ria}}. If i reports R′i : acb . . .

instead, then ϕ
(r,σ)
ia (R′i, R−i) + ϕ

(r,σ)
ic (R′i, R−i) = ria + ric + min{rib, rjc}. By sd-strategy-

proofness,

min{rib,max{0, rjc − ria}} = min{rib, rjc}, (3)

but this contradicts the hypothesis that r1a + r1b > r2c.

Lemma 3. Let (r, σ) be a TPAC parameter. If there are i, j ∈ N and a, b ∈ O such that

ria + rja = rib + rjb = 1, then ϕ(r,σ) is not sd-strategy-proof.

Proof. Without loss of generality, let σb(i) = 1. Let R ∈ RN be as below.

Ri Rj R−{i,j}

c c a

a a b

b b c
...

...
...

Then, ϕ
(r,σ)
ia (R) + ϕ

(r,σ)
ic (R) = ria. If i reports R′i : acb . . . instead, then ϕ

(r,σ)
ia (R′i, R−i) +

ϕ
(r,σ)
ic (R′i, R−i) = ria + max{1 − rja, r1b}. Since ria, rib > 0, the maximum term is positive,

and ϕ(r,σ) is not sd-strategy-proof.

Proposition 5. Let (r, σ) be a TPAC parameter. If there is an agent that owns positive

trading rights of three or more objects, then ϕ(r,σ) is not sd-strategy-proof.

We will make repeated use of Lemma 2, and write Lemma 2(i, j) if i and j are the relevant

agents.

Proof. We will divide into three cases:

1. i is top priority in only one object, and middle priority in some object,

2. i is top priority in two or more objects, and middle priority in some object, and
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3. i is top priority in all objects in which they have positive probability,

Let Oi ⊂ O be the set of objects for which i owns positive trading right in r, Oi,top ⊂ Oi

be the set of objects for which i is top priority, Oi,mid ⊂ Oi be the set of objects for which i

is not top priority, O−i ⊂ O be the set of objects for which i does not own any trading right,

and a ∈ Oi be such that σa(i) = 1.

Case 1: For each b ∈ Oi\{a}, σb(i) 6= 1. Relabel Oi\{a} as b1, . . . , bx. By construction,

there is an agent that is top priority at b1 that is not i. Let j1 be this agent. If there is b2,

then similarly, there is j2. Note that j1 6= j2, by Lemma 2(i, j1). Continuing in this fashion,

there is a sequence of objects j1, . . . , jx who are each top priority respectively at b1, . . . , bx.

σ: a b1 · · · bx

i j1 jx
...

...
...

i · · · i
...

...

Consider j1. Since j1 owns total amount 1 of trading rights, there is c1 ∈ O\{b1} such

that rj1c1 > 0. By Lemma 2(i, j1), c1 /∈ {b2, . . . , bx}. So c ∈ O−i ∪{a}. Let c1 ∈ O−i (we will

cover the general case). Similarly, there is c2 such that rj2c2 > 0 and c2 ∈ O−i. By Lemma

2(j1, j2), c1 6= c2. Repeating this reasoning, we have c1, . . . , cx where j1, . . . , jx owns positive

trading rights of their respective object. For each jz ∈ {j1, . . . , jx}, Lemma 2(i, jz) implies

that σcz(jz) 6= 1 (shown below).

σ: a b1 · · · bx c1 · · · cx

i j1 jx k1 kx
...

... · · · ...
... · · · ...

i i j1 jx
...

...
...

...

Consider c1. Let k1 ∈ N\{i, j1} be such that σc1(k1) = 1. For each jz ∈ {j2, . . . , jx},
Lemma 2(j1, jz) implies that k1 6= jz. So k1 /∈ {i, j1, . . . , jx}. Repeating the reasoning as

in the previous paragraph, there is k1, . . . , kx ∈ N\{i, j1, . . . , jx} such that each is the top

priority respectively at c1, . . . , cx (shown above) and for each ky, kz ∈ {k1, . . . , kx}, ky 6= kz.
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Since each kz ∈ {k1, . . . , kx} owns total amount 1 of trading right, there is d1, . . . , dx ∈
O\{b1, . . . , bx} such that k1, . . . , kz respectively have positive trading right of the object.

Furthermore, for each ky, kz ∈ {k1, . . . , kx}, by Lemma 2(ky, kz), dy 6= dz and dy 6= cz. So

d1, . . . , dx ∈ O\{b1, . . . , bx, c1, . . . , cx}.
Thus, we are able to construct a sequence i, j1, . . . , jx, k1, . . . , kx, ... with the aforemen-

tioned properties. By finiteness of N , there is some agent `∗ such that `∗ is at the top priority

of some object, and by feasibility of r and finiteness of O, r`∗a > 0 (shown below).

σ: a b1 · · · bx c1 · · · cx d1 · · · dx · · · e

i j1 jx k1 kx `∗

...
... · · · ...

... · · · ...
... · · · ... · · · ...

`∗ i i j1 jx k1 kx
...

...
...

...
...

...
...

Since i owns three or more objects, x > 1. We can thus continue to construct the sequence

as above with the other x− 1 agents, contradicting the finiteness of N .

Case 2: There is a′, b ∈ Oi\{a} such that σa′(i) = 1, and σb(i) 6= 1. We construct a

sequence of agents as in Case 1. Note that each j1, . . . , jx as above now cannot have positive

trading right of a or a′ or any a′′ ∈ {â ∈ Oi : σâ(i) = 1}, by Lemma 2(i, j1), so this sequence

of agents must be infinite—contradicting the finiteness of N .

Case 3: For each x ∈ Oi, σx(i) = 1.

Case 3.1: Oi = O . Consider j who is second priority after 1 for some object. By

definition of r, j appears in some other object. By Lemma 2, ϕ(r,σ) is not sd-strategy-proof.

Case 3.2: Oi 6= O, & ∃j ∈ N\{i} such that |Oj| ≥ 2 and for each x ∈ Oj, σx(j) = 1. By

Lemma 3, ϕ(r,σ) is not sd-strategy-proof.

Case 3.3: Oi 6= O, & ∀j ∈ N\{i} such that |Oj| ≥ 2, there is x ∈ Oj such that σx(j) 6= 1.

Consider x ∈ O\Oi, and let j ∈ N\{i} be the top priority agent at x. If |Oj| ≥ 3, then

by Case 1 and Case 2, we are done. Thus, for each x ∈ O\Oi, the top priority agent owns

trading right of either one or two objects.
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Let b1 ∈ O\Oi. If there is only one owner of trading rights of b1, then this agent owns full

trading right of b1 (Case 3.3.1). Instead, let there be at least two owners. Let j1 ∈ N\{i}
be the top priority agent at b1.

By definition of r and Case 3.3, there is b2 ∈ O\(Oi ∪ {b1}) such that rb2j1 > 0 and

σb2(j1) 6= 1. Let j2 ∈ N\{i, j1} be such that σb2(j2) = 1. Observe that j2 owns positive

trading right of one other object in O\(Oi ∪ {b2}). Let b3 be this object. Continuing in

this manner, by finiteness of O, we can construct a sequence of agents j1, . . . , jx and objects

b1, . . . , bx such that σb1(j1) = 1 6= σb2(j1),..., and σbx(jx) = 1 and rb1jx > 0 (shown below).

σ: a · · · b1 · · · bx

i · · · j1 jx
... jx · · · jx−1

Futhermore, for each b1, . . . , bx, there are only two owners: if there is h ∈ N\{i, j1, . . . , jx}
such that h owns positive trading right of one of b1, . . . , bx, then there is some agent in

j1, . . . , jx that owns positive trading right of a third object—contradicting the definition of

Case 3.3.

Case 3.3.1: x ≥ 3. The following economy shows that ϕ(r,σ) is not sd-strategy-proof.

σ : b1 b2 b3 Rj1 Rj2 Rj3 R′j1
j1 j2 j3 b3 b2 b3 b2

... j1 j2 b2 b1
... b3

b1
... b1

...
...

By above, either rj1b1 = rj2b2 = rj3b3 ≥ rj1b2 = rj2b3 or rj1b1 = rj2b2 = rj3b3 < rj1b2 = rj2b3 .

In the former case, j1 gets rj1b2 of b2 and b3 in the truth, and rj1b2 + rj2b3 in the lie. In the

latter case, j1 gets the same as in the truth, and rj1b2 + rj1b1 of b2 and b3 in the lie.

Case 3.3.2: x = 2. By Lemma 4, ϕ(r,σ) is not sd-strategy-proof.

Case 3.3.3: There is one agent that owns b1. By the reasoning of Cases 3.3.2 and 3.3.3,

each agent j ∈ N\{i} that has positive trading right of some object x ∈ O\Oi, has full

trading right of x. Thus, each j ∈ N\{i} such that j owns positive trading right of some
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object in Oi is such that Oj ⊆ Oi. Let j ∈ N\{i} be such that j is second priority for some

object in Oi. Since |Oi| ≥ 3, by Lemma 2(i, j), ϕ(r,σ) is not sd-strategy-proof.

Proof of Theorem 1. By Proposition 5, each agent owns positive probability of either one or

two objects. Suppose by contradiction that there is i ∈ N , and a, b ∈ O such that ria, rib > 0

and σa(i) = 1.

Let σb(i) = 1. By Lemma 2, for each c ∈ O\{a, b}, there is one agent k ∈ N\{i} that

owns full probability of c; otherwise, ria + rib = 1 > rkc (if k is the first priority agent of

c). By definition of r, there is j ∈ N\{i} with rja + rjb = 1. By Lemma 3, ϕ(r,σ) is not

sd-strategy-proof.

Let σb(i) = 2. By definition of r, there is j1 ∈ N\{i} such that rjb = 1 − rib. If j

has positive trading right of b, then by Lemma 3, ϕ(r,σ) is not sd-strategy-proof. Thus, j

has positive trading right of some c ∈ O\{a, b}. By Lemma 1, σc(j1) 6= 1, so there is

j2 ∈ N\{1, j1} such that σc(j2) = 1. Finally, the example in Case 3.3.1 of Proposition 5

shows that ϕ(r,σ) is not sd-strategy-proof.

Appendix B

Claim 1. Let x be an allocation, and i, j ∈ N . Then, xji ∈ 4O.

Proof. Note that for each j ∈ N ,
∑

o∈O tjo = 0. Thus, for each i, j ∈ N ,
∑

o∈O x
j
io =∑

o∈O ωio + α(ωi, ωj)
∑

o∈O tjo =
∑

o∈O ωio = 1.

Let j ∈ N and a ∈ O be such that tja < 0, and therefore, |tja| ≤ ωja. Clearly, xjia ≤ 1.

Suppose on the contrary that xjia = ωia + α(ωi, ωj)tja < 0. That is, ωia < α(ωi, ωj)|tja| ≤
α(ωi, ωj)ωja, which implies ωia

ωja
< α(ωi, ωj), a contradiction. Therefore, xjia ∈ [0, 1].

Let j ∈ N and a ∈ O be such that tja > 0. Clearly, xjia ≥ 0. Suppose on the contrary

that xjia = ωia +α(ωi, ωj)tja > 1. Since,
∑

o∈O x
j
io = 1, there is b ∈ O \ {a} such that xjib < 0,

a contradiction.

Hence, for each i, j ∈ N and each a ∈ O, xjia ∈ [0, 1] and
∑

o∈O x
j
io = 1, which imply

xji ∈ 4O.

Proof of Thereom 2. Let R ∈ RN , (q, τ) be a Generalized TPAC parameter that satisfies

ε-no-ahead, and x ≡ ϕ(q,τ)(R). Let o ∈ O, i, j ∈ N , and B ⊆ O be such that B ≡ {b ∈ O :

bRio}. Let (tkio) be the trade vector generated from the algorithm for computing ϕ(q,τ)(R).

For each subset B ⊆ O, let tkiB be the total accumulation of objects in B at the end of Step

k, that is, tkiB ≡
∑

o∈B t
k
io.

We want to show that
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ε+
∑
b∈B

xib ≥
∑
b∈B

xjib.

Step 1: Express the summations in the inequality above in terms of objects in O\B.

By definition of xi and xji , the inequality becomes

ε+
∑
b∈B

(ωib + tib) ≥
∑
b∈B

(ωib + α(i, j)tjb)

and simplifying,

ε+
∑
b∈B

tib ≥
∑
b∈B

α(i, j)tjb.

Let S be the last step of the algorithm for computing ϕ(σ,r)(R), and s(B) be the last step

that an object in B is still available. By definition of s(B), the inequality becomes

ε+
∑
s≤s(B)

∑
b∈B

tsi,b ≥
∑
s≤s(B)

∑
b∈B

α(i, j)tsj,b. (4)

By definition of t, we rewrite components of the LHS then RHS of equation (4) respec-

tively as: ∑
b∈B t

s
ib

=
∑
{b∈B: tsib=0} t

s
ib +

∑
{b∈B: tsib 6=0} t

s
ib

=
∑
{b∈B: tsib>0 and ∃d/∈B, tsid<0} t

s
ib +

∑
{b∈B: tsib>0 and ∃d∈B, tsid<0} t

s
ib

+
∑
{b∈B: tsib<0 and ∃d∈B, tsid>0} t

s
ib

=
∑
{b∈B: tsib>0 and ∃d/∈B, tsid<0} t

s
ib

=
∑
{d/∈B: ∃b∈B, tsib>0 and tsid<0} |tsid|∑

b∈B t
s
jb

=
∑
{b∈B: tsjb=0} t

s
jb +

∑
{b∈B: tsjb 6=0} t

s
jb

=
∑
{b∈B: tsjb>0} t

s
jb +

∑
{b∈B: tsjb<0} t

s
jb

=
∑
{b∈B: tsjb>0 and ∃d/∈B, tsjd<0} t

s
jb +

∑
{b∈B: tsjb>0 and ∃d∈B, tsjd<0} t

s
jb

+
∑
{b∈B: tsjb<0 and d∈B, tsjd>0} t

s
jb +

∑
{b∈B: tsjb<0 and d/∈B, tsjd>0} t

s
jb

=
∑
{d/∈B: ∃b∈B, tsjb>0 and tsjd<0} |tsjd|+

∑
{d/∈B: ∃b∈B, tsjb<0 and tsjd>0}−|tsjd|

≤
∑
{d/∈B: ∃b∈B, tsjb>0 and tsjd<0} |tsjd|
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Since α(i, j) ∈ [0, 1], we can compare the RHS to the new expression:

∑
s≤s(B)

∑
b∈B

α(i, j)tsjb ≤
∑
s≤s(B)

∑
{d/∈B: ∃b∈B, tsjb>0 and tsjd<0}

α(i, j)|tsjd|.

Thus, it is sufficient to show that

ε+
∑
s≤s(B)

∑
{d/∈B: ∃b∈B, tsib>0 and tsid<0}

|tsid| ≥
∑
s≤s(B)

∑
{d/∈B: ∃b∈B, tsjb>0 and tsjd<0}

α(i, j)|tsjd| (5)

Step 2: Use ε-no-ahead to show the desired inequality for each object d ∈ O \B.

Let d ∈ O \ B. Then, for each b ∈ B, b Pi d, and at each Step s ≤ s(B), agent i either

trades d for another object in B or does not use d. Thus, for each s ≤ s(B), tsid ≤ 0.

Case 1: At the end of Step s(B), agent i has a positive remaining trading rights of object

d. That is,

∑
s≥s(B):τd(psd)=i

q̂d(p
s
d) > 0.

This also implies that p
s(B)
d ≤ p̄id.

Case 1.1: It is not agent i’s turn to trade object d at Step s(B), i.e. τd(p
s(B)−1
d ) 6= i.

Since at each Step s ≤ s(B), agent i either trades d for another object in B or does not use

d, we have

∑
{p≤ps(B)

d :τd(p)=i}

qd(p) =
∑
s≤s(B)

|tsid|.

Moreover, since p
s(B)
d ≤ p̄id and (q, τ) satisfies ε-no-ahead, for each j ∈ N \ {i},

ε+
∑

{p≤ps(B)
d :τd(p)=i}

qd(p) ≥
∑

{p≤ps(B)
d :τd(p)=j}

qd(p).

Combining these, we get
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ε+
∑

s≤s(B) |tsid| ≥
∑
{p≤ps(B)

d :τd(p)=j} qd(p)

≥
∑
{s≤s(B): tsjd<0} |tsjd|

≥
∑
{s≤s(B): tsjd<0 and ∃b∈B, tsjb>0} |tsjd|

≥ α(i, j)
∑
{s≤s(B): tsjd<0 and ∃b∈B, tsjb>0} |tsjd|,

where the second inequality is due to the fact that at some step before s(B), j may have con-

sumed their own right of d, and the third inequality is due to the the fact that, additionally,

j may have used their right of d to get some object outside of B.

Case 1.2: It is agent i’s turn to trade object d at step s(B), i.e. τd(p
s(B)−1
d ) = i. Now,

since p
s(B)−1
d − 1 < p̄id and (q, τ) satisfies ε-no-ahead, for each j ∈ N \ {i},

ε+
∑

{p≤ps(B)−1
d −1: τd(p)=i}

qd(p) ≥
∑

{p≤ps(B)−1
d −1: τd(p)=j}

qd(p).

Hence, we have

ε+
∑

s≤s(B) |tsid| = ε+
∑
{p≤ps(B)−1

d −1: τd(p)=i} qd(p) +
∑
{s≤s(B): ps−1

d =p
s(B)−1
d } |t

s
id|

≥ ε+
∑
{p≤ps(B)−1

d −1: τd(p)=i} qd(p)

≥
∑
{p≤ps(B)−1

d −1: τd(p)=j} qd(p)

=
∑
{p≤ps(B)−1

d −1: τd(p)=j} qd(p) +
∑
{p=ps(B)−1

d : τd(p)=j} qd(p)

=
∑
{p≤ps(B)−1

d : τd(p)=j} qd(p)

≥
∑
{s≤s(B): tsjd<0} |tsjd|

≥
∑
{s≤s(B): tsjd<0 and ∃b∈B, tsjb>0} |tsjd|

≥ α(i, j)
∑
{s≤s(B): tsjd<0 and ∃b∈B, tsjb>0} |tsjd|.

Case 2: Suppose that at the end of step s(B), agent i does not have any positive remaining

trading rights of object d. That is ∑
{s≥s(B):τd(psd)=i}

q̂d(p) = 0.

In other words, agent i trades the amount of d they own in return for objects in B.

Therefore,
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∑
s≤s(B)

|tsi,d| = ωid

If ωjd > 0, then since α(i, j) ≤ ωid

ωjd
and ωid ≥

∑
{s≤s(B): tsjd<0 and ∃b∈B, tsjb>0} |tsjd|, we have

ε+
∑

s≤s(B) |tsid| = ε+ ωid

≥ α(i, j)ωjd

≥ α(i, j)
∑
{s≤s(B): tsjd<0 and ∃b∈B, tsjb>0} |tsjd|.

If ωjd = 0, then notice that two expressions are zero, and the inequality holds trivially.

This concludes Case 2.

Step 3: Combining both cases and sum over d ∈ O\B. By Steps 1 and 2, we have

ε|O|+
∑
{s≤s(B): ∃d/∈B, tsid<0 and ∃b∈B, tsib>0} |tsid|

≥ ε|O\B|+
∑
{s≤s(B): ∃d/∈B, tsid<0 and ∃b∈B, tsib>0} |tsid|

=
∑

d/∈B

(
ε+

∑
{s≤s(B): tsid<0 and ∃b∈B, tsib>0} |tsid|

)
=

∑
d/∈B

(
ε+

∑
s≤s(B) |tsid|

)
≥

∑
d/∈B

(
α(i, j)

∑
{s≤s(B): tsjd<0 and ∃b∈B, tsjb>0} |tsjd|

)
= α(i, j)

∑
{s≤s(B): ∃d/∈B, tsjd<0 and ∃b∈B, tsjb>0} |tsj,d|.
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