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Abstract

We study the assignment of an object with multiple copies where various

numbers can be reserved for groups of individuals. We focus on the reserve

system’s ability to increase representation of a targeted group. We consider a

general setting that covers many features considered in the recent literature; in

particular, an individual can belong to more than one group and the priorities of

individuals may differ across reserved copies. We show how a precedence order can

be modified to increase the representation of the targeted group.

1 Introduction

Consider the problem of assigning homogeneous copies of an object (e.g., school seats,

work permits, public sector jobs, or vaccines) to a set of individuals. Each individual

receives at most one copy of the object and falls into one or more categories of relevant
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types regarding age, gender, race, socioeconomic status, etc. Each copy can prioritize a

particular type, but does not necessarily have to do so; in this case, we refer to them as

open copies. If a copy of an object prioritizes type t individuals over the others, then

we say that copy is reserved for type t. In this paper, we focus on the ability to increase

representation of a particular type, while still respecting priority orders of the object

copies.1 We search for techniques that apply independently of and across all possible

priority orders. This grants transparency—the selection process cannot be affected by

the particular set of applicants considered and thus any acceptance changes are due

purely to representation goals.

We consider a general model with the express purpose of capturing (almost) all of

the key features of problems studied in the recent literature.2 Since we allow individuals

to have more than one type, a pair who shares types may reverse their relative priority

across object copies. Similarly, subsets of individuals may overlap with various types

while reversing orders in complex ways. Due to this generality, achieving greater

representation of a certain type is not straightforward.

Our contribution is to shed light on how different ways of implementing a reserve

system may influence the final allocation, above and beyond just the numbers reserved

for each type. While reserve numbers are salient and easy to understand, the influences

of other structures on welfare are less obvious. In particular, we consider the different

orders in which we process the copies of the object. If the copies s1, s2,..., sn of the

object are processed sequentially in order of their index, then we first assign s1 using

the priority order associated with s1, then similarly with s2, and so on. We refer to this

as sequential processing, and to the order that we follow as a precedence order on the set
1An allocation respects priority orders if there does not exist individuals i and j such that j is

assigned while i is not, but i has higher priority than j at the copy that j is assigned to.
2Section 2 details the models that we cover.
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of copies (Kominers and Sönmez, 2016). We may observe significantly different welfare

effects for different types depending on which precedence order is used. These effects

are neglected if one simply considers the numbers of reserves.

We first give a characterization of a subset of allocations of the copies respecting

priorities via sequential processing. For any precedence order, sequentially processing

the copies results in an allocation that respects priorities (Proposition 1a). Consider

the other direction. When the priority order for each copy ranking type t individuals

is the same, and the analogous statement holds for every other type, any allocation

respecting priorities can be achieved by sequential assignment for some precedence order

(Proposition 1b).

Next we examine the effects of varying the precedence orders on the number of

the assigned individuals with a targeted type. Due to the generality of the model,

the precedence order that maximizes representation of individuals with a targeted type

depends on priorities (Example 2).

We thus take a broad approach: for any priority order, we show how to adjust

a given precedence order so that representation of individuals with the targeted type

weakly increases. Let t∗ be the targeted type, Dt∗ be the set of all types t such that all

individuals of type t are also of type t∗, and Ut∗ be the set of all types t such that the

set of type t and type t∗ individuals are not connected (via some sequence of types).

We show that, for any priority order, processing copies that prioritize individuals of

types in Dt∗ after all other copies increases the representation of type t∗ individuals

(Proposition 2). When all open copies are adjacent in the given precedence order, we

show that the representation of type t∗ individuals weakly increases by placing all copies

that prioritize individuals of types in Ut∗ before the open copies without changing the

relative orders (Proposition 3). Finally, we show that when every type is either in Dt∗
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or Ut∗ , we can achieve greater representation of t∗ individuals by moving all copies that

prioritize individuals of types in Ut∗ in front of all open copies, and all open copies in

front of all copies that prioritize individuals of types in Dt∗ (Proposition 4).

Our analysis reveals the importance of connectedness of different types as a constraint

on the ability to increase representation by adjusting precedence orders. Many types may

be connected simply by one individual. In such a case, assignment of that individual to

a seat will change the connectedness of types when remaining individuals are considered.

Therefore, our result might become suggestive for the assignment of remaining individuals.

The paper proceeds as follows: Section 2 discusses the relevant literature. In Section

3 we present our model, and in Section 4 we discuss our results. Section 5 concludes.

2 Literature Review

The growing literature on allocating objects when individuals have types and priorities

stems from the importance of distributional goals reflecting fairness, representation, or

public objectives in various centralized assignment problems. We highlight works closest

to ours.

In school choice, diversity and affirmative action can be implemented with slot-

specific priorities (where a slot is a seat at the school).3 Dur et al. (2018) study Boston’s

school choice system in which each school reserves 50% of its seats for walk-zone students,

and the other 50% are left open to all applicants. Their analysis highlights the effect

of precedence orders on the outcome of the reserve system. Dur et al. (2020) analyze

affirmative action policies in Chicago’s public schools and examine the balance between

diversity and merit objectives. They show that, even in a “tier-blind” procedure, a group
3Kominers and Sönmez (2016) introduce slot-specific priorities in a many-to-one matching with

contracts model, and demonstrate the wide applicability of this model in various matching markets
including the cadet-branch matching and airline seat allocation problems.
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can be favored (or not) due to correlations between tier and merit via the order in which

slots are processed.

Sönmez and Yenmez (2019) consider the problem of allocating government jobs and

college seats in India under vertical and horizontal reservations.4 They show that the

choice rule mandated by the Indian Supreme Court is not well-defined, does not respect

priorities, and is manipulable by hiding vertical categories. They propose choice rules

that alleviate the issues above, and deviate minimally from the current rule in usage.

Priority in their model stems from applicants’ “merit scores”, so two individuals of the

same type will always maintain the same pairwise rank; in our environment, these two

individuals may reverse in priority across different seats’ priority orders. In a model with

just horizontal traits, Sönmez and Yenmez (2020) characterize choice rules that are non-

wasteful, respecting priorities, and complying with reserves while accepting the maximal

number of applicants. They do so for the case when an individual’s assignment counts

for one reserve trait only, as well as the case where her assignment counts for all traits

and individuals have at most two traits. We do not consider horizontal reservations in

our model.

Pathak et al. (2020) examine the H1-B visa allocation program in the US. In their

model, there are two types of applicants and positions—general-category and reserved-

category—each with their own priority order. Among the reforms adopted in the last 15

years, they show that the latest reforms of 2019 ensure the largest number of reserved

category applicants in the final allocation.

Motivated by the COVID-19 pandemic, Pathak et al. (2021) study reserve design in

the allocation of medical resources such as ventilators and vaccines. They characterize

the set of non-wasteful allocations which respects priorities as the set of all cutoff
4Aygün and Turhan (2020b) relatedly study affirmative action in Indian engineering colleges with

vertical reservations only.
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equilibria. They consider precedence orders over categories and show that the later a

category is processed, the more individuals from that category are selected. Finally, they

propose a “smart” reserve matching algorithm to alleviate issues of Pareto-inefficiency.

Our model includes almost all of the key features of those mentioned above. Table

1 summarizes these in the aforementioned papers and ours.5 Our contribution is to

specify how we can increase representation of a targeted type with respect to a given

precedence order, and can be applied in each of the other settings. In more restrictive

environments, Dur et al. (2020), Pathak et al. (2020), and Pathak et al. (2021) provide

the precedence order which maximizes representation of a targeted type. Our results do

not prescribe the precedence order which maximizes representation of a targeted type.

Instead, our results can be helpful to policymakers when they are faced with the more

general problem and computing such a maximal precedence order is difficult.

DPKS DPS SYa SYb PRJS PSUY This Paper
Types
overlapping - - + + - + +

Priority Order
single + + + + + + +
multiple + + + - +(2) + +

Precedence
over categories + + - - + + +
over indiv. seats + + - - - - +

Table 1: Comparing types of reserves and priorities in Dur et al. (2018), Dur et al.
(2020), Sönmez and Yenmez (2019), Sönmez and Yenmez (2020), Pathak et al. (2020),
Pathak et al. (2021), and this paper. Overlapping reserves indicate that an individual
can have several different types, thus qualifying for seats reserved for each type.

5In addition to the literature summarized in the table, other related papers on reserves are Hafalir
et al. (2013), Fragiadakis and Troyan (2017), Aygün and Turhan (2020a), Delacrétaz (2021), Aygün
and Bó (2021), Sönmez and Yenmez (2021), and Pathak et al. (2022).
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3 Model

We study the assignment of a finite set of (identical) seats, S, to a finite set of

individuals, I. Each individual can receive at most one seat, is indifferent between

each, and prefers having one to none.

Let T be a finite set of types. Types can be defined over the attributes of the

individuals such as age, gender, and race. Let τ : I ⇒ T be the type correspondence

of individuals and τ(i) 6= ∅ for all i ∈ I. We denote the set of individuals with type t

as It = {i ∈ I : t ∈ τ(i)}.6 Since an individual may have multiple types, it is possible

that It ∩ It′ 6= ∅ for some t, t′ ∈ T . If It ⊆ It′ , then we say type t′ includes type t. Let

Dt′ = {t ∈ T : It ⊆ It′} be the set of types that type t′ includes. We say types t and

t′ are unrelated if It ∩ It′ = ∅ and there does not exist a sequence of distinct types

(t1, . . . , tk) such that It ∩ It1 6= ∅, It1 ∩ It2 6= ∅, . . . , Itk−1
∩ Itk 6= ∅, and Itk ∩ It′ 6= ∅.

Types t and t′ are related if they are not unrelated. For each type t, we denote the

related and unrelated types with Rt and Ut, respectively.7 Notice that t ∈ Rt for all

t ∈ T and if t′ ∈ Rt, then Rt = Rt′ and Ut = Ut′ .

Each seat s prioritizes individuals according to a strict order πs over I. We say πs

is the priority order of seat s. Let π = (πs)s∈S. Some seats prioritize a certain type

of individuals over others. The function σ : S → T ∪ {o} specifies the type prioritized

by each seat s ∈ S. If σ(s) = t for some t ∈ T , then all type t individuals are ranked

over all other individuals under πs. That is, if σ(s) = t, for every i ∈ It and j ∈ I \ It,

we have i πs j. If σ(s) = o, then we say s is an open seat, and it does not prioritize

a certain type of individual. If σ(s) = σ(s′), then πs = πs
′ . That is, seats prioritizing

6In what follows, we say type t individuals instead of individuals with type t.
7Related types can also be understood in terms of graph connectivity. Define a type-graph as the

graph whose vertex set is the set of types T and create an edge between each pair of types if and only
if It ∩ It′ 6= ∅. Two types are related if and only if they are both contained within the same connected
component of the type-graph.
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the same type of individuals rank individuals in the same order.8 Let πt and πo be the

priority orders of seats ranking type t individuals and open seats, respectively. For each

type t ∈ T , let St = {s ∈ S : σ(s) = t} be the set of priority seats for type t, and

So = {s ∈ S : σ(s) = o} be the set of open seats. We say that seat s is a type t

seat if s ∈ St, and an open seat if s ∈ So. For each type t′, let SDt′ = ∪t∈Dt′
St and

SD−t′ = S \ SDt′ .

A problem is a tuple (I, S, T, σ, τ, π). In the rest of the paper, we represent a

problem with I whenever it is convenient. A matching µ : I → S ∪ {∅} is a function

that assigns each individual to at most one seat such that |µ−1(s)| ≤ 1 for all s ∈ S.

If µ(i) = ∅, then individual i is unassigned. Let M be the set of matchings. For any

matching µ, let |µ| = |{i ∈ I : µ(i) ∈ S}| be the number of individuals who are assigned

to a seat.

We define some desirable properties for our setting. A matching µ is non-wasteful

if, for every i ∈ I, µ(i) = ∅ implies |µ| = |S|. An individual i justifiably envies

another individual i′ under matching µ if µ(i′) ∈ S, µ(i) = ∅, and i πµ(i′) i′. A matching

µ is fair if no individual justifiably envies another one under µ.

In our analysis, we have the following assumption of over-demand: the number of

individuals of any type t is greater than the number of open seats and seats of types

related to t.

Assumption 1 For each t ∈ T , |It| > |So|+
∑

t′∈Rt
|St′ |.

If Rt = {t}, then Assumption 1 reduces to |It| > |So| + |St|. Under Assumption 1, all

seats will be filled in any non-wasteful matching. Furthermore, in any fair matching,

for every t ∈ T , the seats in St will be assigned to individuals in It. We formally prove
8In our analysis, we only need such seats to rank only the prioritized individuals to be ranked in the

same order.
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these in the Appendix.9

For a given set of individuals, there may exist multiple fair and non-wasteful matchings.

In particular, the order of the seats filled in a sequential way may determine which fair

and non-wasteful matching is observed. A precedence order . is a linear order over

the seats in S. Given two seats s, s′ ∈ S, let s . s′ mean that seat s is to be filled before

seat s′. Let ∆ be the set of all precedence orders. For a given subset of individuals

Ī ⊆ I and precedence order ., the chosen set of individuals from subset Ī is denoted by

C(., Ī) and we call C(·) a choice function. Implicitly, C(·) depends on the priority

profile π, but since π is fixed through the analysis, we suppress it for brevity.

Let S = {s1, . . . , s|S|} and sk . sk+1 for all k ∈ {1, . . . , |S| − 1}. Then, C(., Ī) is

determined as follows: Initially set C(., Ī) = ∅. Assign the individual with the highest

priority under πs1 among individuals in Ī to s1, and add her to C(., Ī). Next, assign

the individual with the highest priority under πs2 among Ī \ C(., Ī) to s2, and add her

to C(., Ī). Continue until all seats are considered.

Given a subset of individuals Ī and precedence order ., for each seat s ∈ S, Cs(., Ī)

is the individual chosen for s by the choice function C(·). Let Ct(., Ī) = C(., Ī) ∩ Īt.

Slightly abusing notation, for any t ∈ T ∪ {o}, let Ct(., Ī) = ∪s∈StC
s(., Ī) be the set of

individuals assigned to seats in St.

We say that matching µ is induced by precedence order . if, for every seat

s ∈ S, µ−1(s) = Cs(., I) and for every individual i /∈ C(., I), µ(i) = ∅. With a

slight abuse of notation and formality, if µ is induced by precedence order B, we use

µ = C(., I).
9Although Assumption 1 seems to be a restrictive, in many application in practice the number of

applicants with each type exceeds the number of available seats (see Dur et al. (2020)). This assumption
simplifies our analysis since it guarantees that for any t ∈ T only type t individuals will be assigned to
type t seats. Alternatively, we could have considered hard reservation constraint which allow only type
t individuals to be assigned to type t seats (Sönmez and Yenmez, 2019; Pathak et al., 2020).
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4 Results

We first investigate the relationship between the set of matchings induced by all

possible precedence orders and the set of fair and non-wasteful matchings.

Proposition 1 Under Assumption 1, the following hold:

(a) If µ = C(., I) for some . ∈ ∆, then µ is fair and non-wasteful.

(b) Suppose that for every t ∈ T and s ∈ St, the relative ranking of individuals in It

is the same as in πo, i.e., i πs j if and only if i πo j for all i, j ∈ It. Then, for

any fair and non-wasteful matching µ there exists a precedence order . such that

µ = C(., I).

Proof. We first prove Part (a). By Assumption 1 and the definition of choice

function C(·), all seats are filled under µ, and therefore µ is non-wasteful. If µ(i) = s,

then Assumption 1 implies that σ(s) ∈ τ(i) ∪ {o}. In the calculation of C(., I) each

seat s is filled with the individual with the highest πs priority among the remaining

individuals. That is, if µ(i) = ∅ and µ(i′) = s for some s, then i′ πs i, and µ is fair.

Next we prove Part (b). By Assumption 1, fairness, and non-wastefulness of µ, for

every t ∈ T , every seat s ∈ St is assigned to some individual in It and every open seat is

filled. Let ik be the individual who has the kth highest priority under πo. We consider

individuals one by one according to πo and construct a precedence order . such that

µ = C(., I). We start with i1. If µ(i1) = ∅, then by fairness of µ, |Sm| = 0 for every

m ∈ τ(i1) ∪ {o}. Otherwise, let µ(i1) have the highest precedence order under .. By

our construction, i1 has the highest priority for µ(i1), and C(., I) assigns i1 to µ(i1).

Similarly, if µ(i2) = ∅, then by fairness of µ, |Sm \{µ(i1)}| = 0 for every m ∈ τ(i2)∪{o}.

Otherwise, let µ(i2) have the highest precedence under . among the seats in S \{µ(i1)}.
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Individual i2 has the highest priority for µ(i2) among all individuals in I \ {i1}, so

C(., I) assigns i2 to µ(i2). Repeating these arguments for all the individuals one by one

according to πo, we construct a well-defined precedence order that induces the matching

µ.

We would like to emphasize that if our conditions in Proposition 1 Part (b) do not

hold, then some fair and non-wasteful matchings cannot be induced by some precedence

order. We illustrate this situation in the following example.

Example 1 Let I = {i1, i2, i3}, T = {t}, τ(i1) = τ(i2) = τ(i3) = t, S = {s1, s2},

σ(s1) = o, σ(s2) = t, i1 πo i2 πo i3 and i2 πs2 i1 πs2 i3. Then, the following matching

is fair and non-wasteful: µ(i1) = s2 and µ(i2) = s1. However, for any . ∈ ∆, C(., I)

assigns i1 to s1 and i2 to s2.

Proposition 1 implies that C(., I) is fair and non-wasteful for every . ∈ ∆. Then, one

can find the precedence order which maximizes the number of chosen type t∗ individuals

among the fair and non-wasteful matchings induced by a precedence order by computing

C(., I) for all . ∈ ∆. However, since we have |∆| = |S|! precedence orders, calculating

all such fair and non-wasteful matchings via enumeration is impractical. Providing a

“systematic recipe”, which is independent of priority orders, for the construction of a

precedence order to achieve maximum representation of targeted type individuals may

be desirable to the market designer.10 In the general model, such a systematic recipe

does not exist. In the following example, we illustrate this situation by showing that

the maximum representation of targeted type individuals is achieved under two different

precedence orders depending on the priority order of open seats.11,12

10Formally, by systematic recipe we mean that given (I, S, T, σ, τ) and a type t, devise a method to
construct . such that for each priority order π, representation of t is maximized.

11Having two different priority orders can be interpreted as having two different sets of individuals
with different characteristics.

12Example 3 also shows a similar situation.
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Example 2 Let T = {t1, t2, t∗}, St1 = {s1}, St2 = {s2}, St∗ = ∅, So = {o1, o2},

It1 = {j1, j2, j3}, It2 = {i1, i2, k1, k2}, and It∗ = {k1, k2, k3, k4}. Consider precedence

orders . and .′ such that o1 . s1 . s2 . o2 and s1 .
′ o1 .

′ s2 .
′ o2. The priority orders of

priority seats for type t1 and t2 are: πt1 : j1− j2− j3− ..., and πt2 : i1− i2− k1− k2− ....

We consider two priority orders for the open seats.

Case 1: πo = j1 − i1 − j2 − k1 − .... Then, C(., I) = {j1, j2, i1, k1} and C(.′, I) =

{j1, i1, i2, j2}. The maximum number of type t∗ individuals chosen in a fair and non-

wasteful matching is one. In this case, . achieves the maximum representation for type

t∗ individuals but .′ fails.

Case 2: πo = j1 − k1 − k2 − i1 − .... Then, C(., I) = {j1, j2, i1, k1} and C(.′, I) =

{j1, i1, k1, k2}. The maximum number of type t∗ individuals chosen in a fair and non-

wasteful matching is two. In this case, .′ achieves the maximum representation for type

t∗ individuals but . fails.

Although Example 2 shows that it is not easy to provide a systematic recipe to

achieve maximum representation of a targeted type, we study whether it is possible to

increase the representation of a targeted type for a given precedence order. We start

our analysis by showing that we can increase the number of chosen type t∗ individuals

by processing the seats in SDt∗ after all other seats while preserving the relative order of

the seats in SD−t∗ .13

Proposition 2 Let ., .′ ∈ ∆ such that

• s .′ s′ for all s ∈ SD−t∗ and s′ ∈ SDt∗ ; and

• s . s′ if and only if s .′ s′ for all s, s′ ∈ SDt∗ or s, s′ ∈ SD−t∗.
13Pathak et al. (2021) show that when we have a precedence order in which all seats with the same

type are adjacent, the earlier type t seats are processed the more selective it becomes (see Proposition
2). Although their result does not directly imply Proposition 2, we can iterate their proof idea to show
a similar result.
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kth `th

.: ... - s∗ - · · · s′ - Ŝ

.̃: ... - · · · s′ - s∗ - Ŝ

Figure 1: Illustration of . and .̃.

Under Assumption 1, the number of type t∗ individuals selected under .′ is weakly

more than the one under ., i.e., |Ct∗(.′, I)| ≥ |Ct∗(., I)|.

Proof. If all seats in SDt∗ succeed all seats in SD−t∗ under ., then . = .′ and Ct∗(., I) =

Ct∗(.
′, I). Suppose at least one seat s∗ ∈ SDt∗ precedes at least one seat s̄ ∈ SD−t∗ under ..

In our proof, at each step we will focus on an intermediate case in which we move one

seat in SDt∗ after all seats in SD−t∗ one at a time while preserving the relative precedence

order of other seats and show that such movement weakly increases the assignment of

type t∗ individuals. Such an increase will be observed when we repeat this movement

one seat at a time for the other seats in SDt∗ .

Let Ŝ be the strict subset of seats in SDt∗ with lower precedence under . than all

other types of seats; that is, for each ŝ ∈ Ŝ ( SDt∗ , and s /∈ S \ Ŝ, we have s . ŝ. Let s∗

be the lowest precedence seat in SDt∗ \ Ŝ under ., and s′ be the lowest precedence seat

in SD−t∗ under .. We denote .̃ as the precedence order obtained from . by moving seat

s∗ just after s′, while keeping the relative order of all other seats the same. Suppose

s∗ is the kth and `th seat under precedence orders . and .̃, respectively (See Figure 1).

By construction, |S| ≥ ` > k. The mth seat under . is the same seat as the mth seat

under .̃ where m < k or m > `. Moreover, the mth seat under .̃ is the same seat as the

(m+ 1)th seat under . where ` > m ≥ k.

We denote the set of individuals selected by choice function C(·) up until themth slot

under . and .̃ with C1:m(., I) and C1:m(.̃, I), respectively. Let Bm = I\C1:m−1(., I) and

B̃m = I \C1:m−1(.̃, I). That is, the set of individuals considered for the mth seat under
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C(.̃, I) and C(., I) are B̃m and Bm, respectively. We denote the individual assigned to

the mth seat under C(., I) with im.

Form < k, since themth seat under . and .̃ are the same, C1:m(., I) = C1:m(.̃, I). We

claim that for ` > m ≥ k, C1:m(.̃, I) ⊂ C1:m+1(., I) and |C1:m+1(., I)\C1:m(.̃, I)| = 1. If

the former part holds, then the latter part of the claim directly follows from Assumption

1, i.e., all seats are filled under both choice functions. We prove the former part of the

claim via induction. We start with m = k. By our construction, B̃k ⊃ Bk+1 and

{ik} = B̃k \ Bk+1. Recall that the types of seat k + 1 under . and seat k under .̃ are

the same. Hence, the individual selected for kth seat under C(.̃, I) is either ik or ik+1.

Then, C1:k(.̃, I) ⊂ C1:k+1(., I) and C1:k+1(., I) \ C1:k(.̃, I) is either {ik} or {ik+1}.

Suppose our claim holds for all m such that ` > m̄ > m ≥ k. That is, C1:m̄−1(.̃, I) ⊂

C1:m̄(., I) and |C1:m̄(., I)\C1:m̄−1(.̃, I)| = 1. Let C1:m̄(., I)\C1:m̄−1(.̃, I) = {j}. Then,

B̃m̄ ⊃ Bm̄+1 and {j} = B̃m̄ \ Bm̄+1. Since the (m̄ + 1)th seat under . and the m̄th

seat under .̃ are the same, so they have the same type. Hence, the individual selected

for m̄th seat under C(.̃, I) is either j or im̄+1. Then, C1:m̄(.̃, I) ⊂ C1:m̄+1(., I) and

C1:m̄+1(., I) \ C1:m̄(.̃, I) is either {j} or {im̄+1}. Then, |C1:`−1
t∗ (.̃, I)| ≥ |C1:`

t∗ (., I)| − 1.

Since the `th seat under .̃ is in SDt∗ , the chosen individual is in It∗ . Then, we have

|C1:`
t∗ (.̃, I)| ≥ |C1:`

t∗ (., I)|. If ` = |S|, then we are done. If ` < |S|, the last |S| − ` seats,

which are all in SDt∗ , will be filled by individuals in It∗ . Hence, |Ct∗(., I)| ≤ |Ct∗(.̃, I)|.

If .̃ = .′, then we are done. Otherwise, there exists another seat in SDt∗ , say ŝ,

which precedes some other seat in SD−t∗ , possibly an open seat, under .̃. We repeat the

process above by replacing s∗ with ŝ, and . with .̃. Due to the finite number of seats,

we ultimately achieve .′ after finite repetition of this process and in each repetition the

type t∗ assignment weakly increases. Thus, we have |Ct∗(., I)| ≤ |Ct∗(.̃, I)| ≤ · · · ≤

|Ct∗(.′, I)|.
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We would like to remark that under precedence order .′, moving all type t∗ seats

after all other seats in SDt∗ cannot increase the number of assigned type t∗ individuals

further. By Assumption 1 and the definition of Dt∗ , all seats in SDt∗ are filled by type t∗

individuals. Hence, reordering the seats in SDt∗ under .′ does not change the number of

assigned type t∗ individuals.

One might consider that processing unrelated seats of type t∗ before all other seats

will result in an increase in the number of selected type t∗ individuals. That is, given a

precedence order ., suppose that we move all seats that are unrelated to type t∗ in front of

all other seats while preserving the relative precedence order of the related and unrelated

seats within each group. Does this movement increase the number of selected type t∗

individuals compared to .? Case 1 in Example 2 shows that this is not always true.

That is, we do not have a systematic procedure that will further increase the number

of the selected type t∗ individuals for any problem given a precedence order without

enforcing any restrictions. We therefore analyze restrictions on precedence orders and

the types of individuals considered to further maximize the presence of targeted type

individuals.

We will show that whenever all open seats are adjacent under some precedence

order, we can further increase the number of selected type t∗ individuals. We do this by

moving all seats of unrelated types of t∗ just in front of all open seats without changing

the relative precedence, in addition to the movement prescribed in Proposition 2.

Proposition 3 Let . be a precedence order in which all open seats are adjacent to each

other, i.e., there does not exist s, s′ ∈ So and s′′ /∈ So such that s . s′′ . s′. Let .′ be a

precedence order obtained from . by moving

• all seats in SDt∗ after all other seats, and
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• all seats of types unrelated to type t∗ that are preceded by open seats under . just

before all open seats

while keeping the relative order of all other seats the same. Then, under Assumption 1,

|Ct∗(., I)| ≤ |Ct∗(.′, I)|.

Proof. Suppose . 6= .′. We will prove the desired result by obtaining .′ through a

series of transformations from ..

Let .̂ be a precedence order obtained from . by moving all seats in SDt∗ after all other

seats while preserving the relative order of seats within SD−t∗ and SDt∗ . By Proposition 2,

|Ct∗(., I)| ≤ |Ct∗(.̂, I)|.

Let .̄ be obtained from .̂ by rearranging the seats that are between the open seats

and the seats in SDt∗ as follows: all seats unrelated to type t∗ now precede all seats related

to type t∗ and the relative precedence order within each group (unrelated/related) is

preserved. Since, under Assumption 1, no individual of type t can fill a seat with a type

that is unrelated to type t under any precedence order, and the relative order within

each group is preserved when we obtain .̄ from .̂, we have C(.̄, I) = C(.̂, I).

Notice that we can obtain .′ from .̄ by moving all seats unrelated to t∗ just in front

of all open seats, while preserving the relative precedence order of all of the other seats.

Under .̄, suppose the first open seat is the kth seat. Since we do not change the order

of seats preceding the kth seat when constructing .′ from .̄, C1:k−1(.̄, I) = C1:k−1(.′, I).

We now compare the assignment to the remaining seats under .̄ and .′. Recall that

under .̄ and .′ the order of the seats after the initial identical block, i.e., the first k − 1

seats, are illustrated in Figure 2.

We first consider precedence order .̄. As explained above, the set of individuals who

are prioritized for seats related to t∗ and seats unrelated to t∗ are disjoint. Hence, under

Assumption 1, reordering the unrelated and related seats between the open seats and
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.̄: ... - Open - Unrelated - Related - SDt∗

.′: ... - Unrelated - Open - Related - SDt∗

.̃: ... - Open - Related - Unrelated - SDt∗

Figure 2: Illustration of .̄, .′ and .̃.

the seats in SDt∗ while keeping the relative order of the seats within each group does not

change the set of selected individuals. That is, we obtain precedence order .̃ from .̄ by

moving the unrelated seats after the open seat block to just before the seats in SDt∗ (See

Figure 2), then C(.̄, I) = C(.̃, I).

Consider .̃ and .′. First recall that type t∗ individuals can be assigned to open and

seats of related types. Since we assign some of the individuals that are type unrelated

to t∗ to the seats unrelated to t∗ first under precedence order .′, the set of unassigned

applicants left to be assigned seats in the open block under .′ is a subset of the same

under .̄. Thus, weakly more individuals of type in Rt∗ receive an open seat under .′

than under .̃. Finally, each individual who has a type in Rt∗ and assigned under .̃ to

some seat in the open or related block will be assigned under .′ to some seat; this is

a consequence of lowered competition due to the earlier assignment of unrelated type

individuals.14 Restricted to type t∗ applicants, |Ct∗(.̃, I)| ≤ |Ct∗(.′, I)|. Hence, we have

|Ct∗(., I)| ≤ |Ct∗(.̂, I)| = |Ct∗(.̄, I)| = |Ct∗(.̃, I)| ≤ |Ct∗(.′, I)|.

If all types related to t∗ are included by it, i.e., Rt∗ = Dt∗ , then Proposition 3 implies

that among the precedence orders in which all open seats are adjacent, we can increase

the number of type t∗ assignment by moving all other seats in front of the open seats
14This is also referred to as the population monotonicity of the Deferred Acceptance mechanism.
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and all related seats after the open seats. We show that this result holds unconditionally

on whether open seats are adjacent or not.

Proposition 4 Suppose Rt∗ = Dt∗. Let . and .′ be precedence orders such that .′ is

obtained from . by moving

• all seats in SDt∗ after all other seats, and

• all seats of types unrelated to type t∗ just before all open seats

while keeping the relative order of all seats within each So, SDt∗ , and S \ (So ∪ SDt∗ ) the

same. Under Assumption 1, |Ct∗(., I)| ≤ |Ct∗(.′, I)|.

Proof. We first obtain precedence order .̄ from . by moving all seats in SDt∗ after

all other seats, while preserving the relative order of all other seats. By Proposition

2, |Ct∗(.̄, I)| ≥ |Ct∗(., I)|. Under .̄ all open seats precede seats in SDt∗ . If all seats in

S \ (SDt∗ ∪ So) precede open seats under .̄, then we are done. Otherwise, there exists

at least one open seat preceding some seat in S \ (SDt∗ ∪ So) under .̄. If all open seats

are adjacent under .̄, then Proposition 3 implies that we can increase the number of

type t∗ individuals selected by C(·) by moving all unrelated type seats, i.e., seats in

S \ (SDt∗ ∪ So), in front of all open seats under .̄.

Suppose that not all open seats are adjacent under .̄. For the rest of the proof, we

call the set of adjacent open seats as an open seat block. We obtain precedence order

.̌ from .̄ by moving all unrelated type seats between the last two open seat blocks just

in front of the penultimate open seat block. Recall that there is no type t∗ related seats

between these two open seat blocks under .̄. Since the precedence order of all other seats

are the same under both .̄ and .̌, it is sufficient to focus on the assignment of the last

two open seat blocks, the seats between these open seat blocks, and type t∗ related seats
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.̄: ... - So1 - S−t
∗

- So2 - St
∗

.̌: ... - S−t
∗

- So1 - So2 - St
∗

Figure 3: Illustration of .̄ and .̌.

under .̄ and corresponding seats under .̌. We denote the last two open seat blocks with

So1 and So2 , seats between them under .̄ with S−t∗ and type t∗ related seats with St∗

(See Figure 3).15 We denote the set of individuals assigned to these seats under C(.̄, I)

and C(.̌, I) with Xo1 , Xo2 , X−t∗ , X t∗ , and Y o1 , Y o2 , Y −t∗ , Y t∗ , respectively. Under

C(.̄, I), we denote the set of applicants that are still unassigned right before proceeding

to seats in So1 , S−t∗ and So2 with Mo1 , M−t∗ and Mo2 , respectively. Under C(.̌, I),

we denote the set of applicants waiting to be assigned to So1 , S−t∗ and So2 with No1 ,

N−t∗ and No2 , respectively. Notice that Mo1 = N−t∗ . By the definition of the choice

functions, we have Xo1 ⊆ Y −t
∗ ∪ Y o1 and Y −t∗ ⊆ Xo1 ∪X−t∗ . That is, any individual

assigned to first open seat block, So1 , under C(.̄, I) is assigned to a seat in either S−t∗ or

So1 under C(.̌, I). Similarly, any individual assigned to S−t∗ under C(.̌, I) is assigned

to a seat in either So1 or S−t∗ under C(.̄, I). Then, Y −t∗ ⊆ Xo1 ∪ X−t∗ implies that

N−t∗ ⊇ No1 ⊇Mo2 .

If Y −t∗ ∪ Y o1 = X−t
∗ ∪Xo1 , then we have C(.̄, I) = C(.̌, I). This follows from the

fact that the precedence order of the remaining seats under .̄ and .̌ is the same. Hence,

the desired result follows.

Suppose Y −t∗ ∪ Y o1 6= X−t
∗ ∪ Xo1 . Let K = (X−t

∗ ∪ Xo1) \ (Y −t
∗ ∪ Y o1) and

L = (Y −t
∗ ∪ Y o1) \ (X−t

∗ ∪ Xo1). By Assumption 1, since all seats are filled under

both C(.̄, I) and C(.̌, I) we have |K| = |L|. Moreover, K ⊆ X−t
∗ and L ⊆ Y o1 .

Since L ∩ (X−t
∗ ∪ Xo1) = ∅ and N−t∗ ⊇ No1 ⊇ Mo2 , L ⊆ Mo2 ⊆ N−t∗ . By definition,

15Notice that St∗ = SD
t∗ .
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((Y −t
∗ ∪Y o1)\L)∩Mo2 = ∅. Hence, for any ` ∈ L and i ∈Mo2 \L we have ` πo i. Then,

we have the following two cases:

Case 1: |L| ≥ |So2|. In this case, if i ∈ Xo2 , then i ∈ L. That is, L ⊇ Xo2 . Then,

Xo1∪Xo2 ⊆ Y o1∪Y o2∪Y −t∗ . Since (Xo1∪Xo2∪X−t∗)∩It∗ ⊆ Xo1∪Xo2 and all seats in St∗

are filled with It∗ individuals under C(.̌, I), we have |Ct∗(.̌, I)| ≥ |Ct∗(.̄, I)| ≥ |Ct∗(., I)|.

Case 2: |L| < |So2|. Since ` πo i for any ` ∈ L and i ∈ Mo2 \ L, we have L ⊂

Xo2 . Moreover, |No2 \ Mo2| = |Mo2 \ No2| = |L| = |K|. Then, any i ∈ Xo2 \ L

is one of the |So2| individuals with the highest priority in No2 , i.e., i ∈ Y o2 . Then,

i ∈ (Xo1 ∪Xo2 ∪X−t∗)∩It∗ implies that i ∈ (Y o1 ∪Y o2 ∪Y −t∗). Since all seats in St∗ are

filled with It∗ individuals under C(.̌, I), we have |Ct∗(.̌, I)| ≥ |Ct∗(.̄, I)| ≥ |Ct∗(., I)|.

If .̌ = .′, then we are done. Otherwise, there exist two open slot blocks under .̌

which are not adjacent to each other. Hence, we can repeat steps described above and

attain .′ and each repetition weakly increases the number of selected type t∗ individuals.

So far, we have not discussed whether we can further increase the number of selected

type t∗ individuals by rearranging the precedence orders of unrelated type seats or

related type seats. The next two examples show that we cannot prescribe a precedence

order arrangement among either related or unrelated type seats to further increase the

number of selected type t∗ individuals, without priority information.

Example 3 Let T = {t1, t2, t∗}, St1 = {s1}, St2 = {s2}, St∗ = ∅, So = {o}, It1 =

{i, j1}, It2 = {i, j2}, and It∗ = {k}. Then, Rt∗ = Dt∗ = {t∗} and Ut∗ = {t1, t2}.

Consider precedence orders . and .′ such that s1 . s2 . o and s2 .
′ s1 .

′ o. Independent

of the priority orders of the individuals, Proposition 4 implies that there does not exist

any other precedence order which increases the number of selected type t∗ individuals

compared to both . and .′.
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Let πs1 : i − j1 − ... and πs2 : i − j2 − .... We consider two possible cases over the

priority order of the open seat such that .′ and . maximize the number of selected type

t∗ individuals in the first and second cases, respectively.

Case 1: πo : i − j1 − k − j2. Then, C(., I) = {i, j1, j2} and C(.′, I) = {i, j1, k}.

The maximum number of type t∗ individuals is selected under .′.

Case 2: πo : i − j2 − k − j1. Then, C(., I) = {i, j2, k} and C(.′, I) = {i, j1, j2}.

The maximum number of type t∗ individuals is selected under ..

Example 4 Let T = {t1, t2, t∗}, St1 = {s1}, St2 = {s2}, St∗ = ∅, So = {o}, It1 =

{i1, i2, k}, It2 = {i1, j1, k}, and It∗ = {k}. Then, Rt∗ = {t1, t2, t∗} and Ut∗ = ∅. Consider

precedence orders . and .′ such that o . s1 . s2 and o .′ s2 .
′ s1.

Let πs1 : i1− i2− k... and πs2 : i1− j1− k.... We consider two possible cases over the

priority order of the open seat such that . and .′ maximize the number of selected type

t∗ individuals in the first and second cases, respectively.

Case 1: πo : j1 − i1 − k − i2. Then, C(., I) = {j1, i1, k}, C(.′, I) = {j1, i1, i2}, and

|Ct∗(., I)| > |Ct∗(.′, I)|.

Case 2: πo : i2 − i1 − k − j1. Then, C(., I) = {i2, i1, j1}, C(.′, I) = {i2, i1, k}, and

|Ct∗(., I)| < |Ct∗(.′, I)|.

5 Conclusion

In this paper, we study the allocation of homogeneous objects to individuals. Each

individual may belong to more than one type and some objects prioritize individuals

with a specific type over others. In this environment we prescribe ways to systematically

increase the number of selected individuals with a targeted type via sequential processing,

while satisfying non-wastefulness and fairness criteria.
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We show that sequential processing will always yield a fair and non-wasteful allocation,

and under certain conditions on the priority orders, every fair and non-wasteful allocation

may be achieved with sequential processing. We further show that there is no single way

to implement sequential processing that will guarantee the maximum representation of

targeted type individuals for all problems.

Following these general results for sequential processing techniques, we describe

adjustments that can be made to a given precedence order to weakly increase the

presence of targeted type individuals in the resulting allocation. These adjustments

rely on the nature of the included, related, and unrelated types to the targeted type

t∗—independent from priority information.

Finally, we mention as an open question the possibility of more general methods.

For example, we give a situation where it is beneficial for the selection process to evolve

based on who has been selected: Two types are related to each other due to only one

individual i. If i is accepted, then for subsequent seats we may treat these two types

as if they are unrelated. Our results then give ways to augment the precedence order

moving forward to increase a particular type’s representation. The following example

illustrates this intuition.

Example 5 Let T = {t, t∗}, So = {o1, o2}, St = {st}, St∗ = {st∗}, It = {i, j, k}, and

It∗ = {i,m, n}. Let πo : i−j−m−n−k, πst : i−j−k−m−n, and πst∗ : m−n−i−j−k.

Note that Rt∗ = T .

In order to increase type t∗ representation, Proposition 2 says we should process st∗

last, but our results give no further guidance. Consider precedence order . such that

o1 . o2 . st . st∗. Then, we have C(., I) = {i, j, k,m}. After i is assigned to object o1,

types t and t∗ are no longer related when considering only individuals in I \ {i}.

Seeing that t is now unrelated to t∗, Proposition 3 suggests that processing st before
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o2 weakly increases the number of selected type t∗ individuals. Let .′ be the precedence

order obtained from . by moving st between two open objects, i.e., o1 .
′ st .

′ o2 .
′ st∗.

Then, we have C(.′, I) = {i, j,m, n} and |Ct∗(., I)| < |Ct∗(.′, I)|.

That is, we dynamically adjust the precedence order conditional on who was selected.

This or some other form of dynamic sequential processing may allow for a greater

presence of targeted type individuals under a greater variety of problems.
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Appendix A

Claim 1 Under Assumption 1, if µ is non-wasteful, then all seats are filled.
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Proof. We will show that Assumption 1 implies |I| > |S|. In any matching where a

seat is unfilled, |I| > |S| implies that there is at least one agent that is unassigned—so

µ violates non-wastefulness. We thus prove the claim by contraposition.

Recall that the set of types that are related form connected components in the

graph with types as vertices and edges as relatedness. Let {T k}k∈K be the partition of

T comprised of related types, so

• for each k ∈ K, and each t, t′ ∈ T k, t′ ∈ Rt, and

• for each t ∈ T k, and each t′ /∈ T k, t′ /∈ Rt.

Consider k ∈ K. By Assumption 1, for each t ∈ T k, |It| > |So|+
∑

t′∈Rt
|St′ |. Summing

over all t ∈ T k,

∑
t∈Tk

|It| > |T k||So|+
∑
t∈Tk

∑
t′∈Rt

|St′ |

= |T k||So|+ |T k|
∑
t′∈Tk

|St′ |

where the equality follows from fact that for each t, t′ ∈ T,Rt = Rt′ . Thus,

∑
t∈Tk

|It| > |T k|

(
|So|+

∑
t′∈Tk

|St′ |

)
.

Since

|T k|

∣∣∣∣∣ ⋃
t∈Tk

It

∣∣∣∣∣ ≥∑
t∈Tk

|It|,

combining with above, we have

∣∣∣∣∣ ⋃
t∈Tk

It

∣∣∣∣∣ > |So|+ ∑
t′∈Tk

|St′ |.
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Summing over all k ∈ K,

∑
k∈K

∣∣∣∣∣ ⋃
t∈Tk

It

∣∣∣∣∣ >∑
k∈K

(
|So|+

∑
t′∈Tk

|St′ |

)
.

Since K is a partition, the LHS equals |I|, and we have

|I| >
∑
k∈K

(
|So|+

∑
t′∈Tk

|St′|

)

= |K||So|+
∑
k∈K

∑
t′∈Tk

|St′|

= |K||So|+
∑
t′∈T

|St′ |

≥ |So|+
∑
t′∈T

|St′|

= |S|.

Claim 2 Let Assumption 1 be true, and µ be a non-wasteful and fair matching. Then,

all seats in St are assigned to individuals in It.

Proof. In the proof of Claim 1, we show that Assumption 1 implies that |I| > |S|.

Hence, in any matching at least one individual is unassigned. Let µ(i1) = ∅. Since µ is

non-wasteful, Claim 1 implies that all seats are filled. Recall that if s ∈ St, then for any

i ∈ It, and any i′ ∈ I \ It′ , we have that i πs i′. Then, for any t ∈ τ(i1), all seats in St

are assigned to individuals in It. Otherwise, µ cannot be fair.

Let I1 be the set of individuals assigned to seats reserved for types in τ(i1) and

all individuals whose types are a subset of τ(i1). We obtain a reduced problem by

removing all individuals in I1 and their assignments under µ. Then, it is easy to see that
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Assumption 1 holds when we consider the remaining individuals and seats. To see that,

consider t ∈ T \τ(i1). By Assumption 1 in the original problem, |It| > |So|+
∑

t′∈Rt
|St′ |.

In the reduced problem, we remove all agents in It that are assigned,16 and so the set

of remaining agents in It is It \ {i ∈ It : µ(i) ∈
⋃
t′∈τ(i1) St′}. By feasibility, for each

t′ ∈ τ(i1), |{i ∈ It : µ(i) ∈ St′}| ≤ |St′|. Thus, we have

∣∣∣∣∣∣It \
i ∈ It : µ(i) ∈

⋃
t′∈τ(i1)

St′


∣∣∣∣∣∣ > |So|+

∑
t′∈Rt\τ(i1)

|St′|,

which is the analog of Assumption 1 for the reduced problem.

Hence, there exists at least one individual i2 ∈ I \ I1 such that µ(i2) = ∅. Then, the

same arguments above imply that all seats in St are assigned to individuals in It for any

t ∈ τ(i2). By repeating the arguments above, we can obtain the desired result.

16Notice that a removed agent j could be a type in τ(i1). That is j is such that t ∈ τ(j), τ(j)∩τ(i1) 6=
∅, and µ(j) is a seat with type in τ(j) ∩ τ(i1).
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