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Abstract

We consider the two-sided many-to-one matching problem and introduce a class

of preferences reflecting natural forms of complementarities. For example, academic

departments hire seniors then supporting juniors, teams recruit different roles and

specialties starting with the critical ones, and firms hire workers at various levels

starting with the executives. The key feature is that a firm can partition workers

into types and prioritizes certain types before others. Despite this partitionability

requirement of choice functions being weaker than substitutes—an essential condition

concerning the existence of a stable assignment—we show that it still guarantees the

existence of a stable assignment and is further a maximal domain for such.
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1 Introduction

We provide a new intuitive class of preferences featuring complementarities that guarantees

a stable assignment in the two-sided many-to-one matching problem. The preferences reflect

rather natural occurrences. For example, firms take greater care in hiring their CEO and

executive staff than associates and analysts; an economics department recruits seniors then

juniors then finally graduate students; a football team prioritizes the quarterback then other

positions. While preferences such as these may not be substitutable—which would guarantee

existence of a stable outcome—they are aligned in such a way where we can divide the

problem into a sequence of smaller ones where solutions do exist.

More precisely, consider the matching problem in the context of the medical labor market.

A set of hospitals wishes to hire from a set of doctors and nurses. Each doctor and each

nurse has a preference over which hospital to join. Hospitals’ choices over applicants are as

follows: For each set of applicants, they choose their favorite set of doctors first, then choose

nurses based on the specialty of the chosen doctors and the aim of having enough nurses to

support the doctors.1 Note that the two are complements (a particular nurse is chosen only

if a particular doctor is chosen), and so hospitals’ choice functions violate the substitutes

condition.

For this problem, a stable assignment always exists. If we ignore the nurses, then there is a

stable assignment of doctors to hospitals. Simply run the Deferred Acceptance mechanism

(DA) with just these two groups. Fixing this assignment, update the hospitals rankings

over nurses to reflect possible changes based on the doctors received and run DA again to

assign nurses. No doctor can be a part of a coalition that blocks this assignment, since

the assignment of doctors/hospitals is stable. Similarly, no doctor and nurse pair can block

together, since no hospital wishes to select an alternative doctor. Finally, no nurse can block:

if they are in a different specialty than the chosen doctor, then the hospital is not interested,

and if they are in the same, then the hospital already has a preferred nurse.

1This example is reminiscent of (Danilov, 2003); however, in our environment, hospitals have preferences
over arbitrary subsets of all types of agents, whereas they consider matchings that are tuples consisting of
only one agent of every type.
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With this scenario in mind, we introduce the concept of a partitionable choice function

embodying the above intuition. If hospitals can collectively partition the medical staff into

distinct groups and choices are aligned in a particular manner, then we show that it is not

necessary that the staff are substitutes across these groups. Given an ordered partition of

staff π, we define a choice function to be π-partitionable if (i) staff are substitutes within

a group, and (ii) the choice of staff in one group does not depend on the staff available

in a later/downstream group. A profile of choice functions is partitionable if there exists

an ordered partition π such that each choice function is π-partitionable.2 Note that any

substitutable choice function can be partitioned by the trivial one consisting of all agents in

one group; hence, partitionability is a weaker requirement than substitutability.

We prove that there always exists a stable assignment when choice functions are partitionable

(Theorem 1). Although in our example in the introduction, doctor and nurse “types” are

given exogenously, the statement holds for arbitrary profiles of choice functions where staff

can be partitioned into such types.3 We define the Sequential Deferred Acceptance (SDA)

mechanism with respect to an order on staff types, and show that it results in a stable

assignment.4 Crucially, the order in which we run SDA aligns with that of the ordered

partition π “rationalizing” the profile of choice functions. We also show a maximal domain

result: If there is even one agent whose choice function is non-partitionable (while the others’

are partitionable), then stable assignments are not guaranteed to exist (Proposition 2).

Finally, we provide an additional application of our results even when Theorem 1 cannot be

directly invoked. Consider the following scenario: Each hospital wishes to hire a doctor only

if it can support her with a specified number of nurses and vice versa. Despite the presence

of pure complements, certain subdomains of problems (mainly dependent on the number of

staff within each group) allow for a stable and strategy-proof mechanism which we refer to

2Implicitly, we consider the hospitals’ choice functions collectively instead of individually, and our
theoretical exercise is to identify a property of a profile of choice functions that is sufficient to guarantee the
existence of a stable assignment. We may view the substitutes domain as a rectangular domain for profiles
of choice functions, and the partitionable domain, a non-rectangular (π must be consistent across agents)
superset of the substitutes domain.

3A similar exercise is performed with single-peaked preferences: Can the set of alternatives be ordered so
that each agent’s preference is single-peaked (with respect to this order)?

4When all agents have the same type, i.e., the partition is trivial, the SDA is equivalent to DA.
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as the SDA with Placeholders (Theorem 2). More generally, we observe these preferences

in labor markets where completion of a task requires a certain number of employees with

different specialties or roles. Finally, diversity policies which require exact representation of

subgroups within teams, schools, and colleges are examples of such pure complements.

The outline of the paper is as follows: In Section 2, we discuss the related literature.

In Section 3, we formally define the model. In Section 3.1, we propose and discuss

partitionability. In Section 3.2 we define the SDA mechanism, and establish the existence

and maximal domain results. In Section 4, we discuss an extension of the SDA applied to an

environment where agents have pure complementarities. Finally, we conclude in Section 5.

2 Related Literature

This paper considers a two-sided matching problem composed of agents with preferences

(or choice functions) over the agents on the other side. Some examples of such problems

are college admission programs, labor markets, hospital-residency matching programs, and

student assignment systems (Gale and Shapley, 1962; Kelso and Crawford, 1982; Roth, 1982;

Roth and Sotomayor, 1992; Balinski and Sönmez, 1999; Abdulkadiroğlu and Sönmez, 2003).

For the survival and success of these matching markets, obtaining a stable matching as a

final outcome is identified as critical (Roth, 1984, 1991; Roth and Sotomayor, 1992).

Existence of a stable outcome can be guaranteed when the multi-unit demand sides’ choices

over the agents on the other side of the market satisfy certain conditions. If the choice

function of each agent on the multi-unit demand side satisfies the substitutes condition,5 then

existence of stable matching is guaranteed in any problem (Kelso and Crawford, 1982; Roth

and Sotomayor, 1992; Hatfield and Milgrom, 2005; Hatfield and Kojima, 2010). Moreover,

when only one contract can be signed between two agents, then the substitutes condition can

be considered a necessary condition (Hatfield and Kojima, 2008). The substitutes domain

5Some variants of substitutability in the matching with contracts literature, such as bilateral
substitutability, are equivalent to substitutability when there is only a single contract available for each
potential match.
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is thus a maximal domain for stability.

In our analysis of the standard two-sided matching problem, we introduce a condition—

partitionability—that is weaker than substitutability, yet still guarantees the existence of

a stable matching. This result does not contradict Hatfield and Kojima (2008) as they

consider a related but different exercise. Hatfield and Kojima (2008) show that so long as

one hospital’s choice function violates substitutes, even if all other hospitals have capacity

for only one doctor, then a stable assignment need not exist.6,7,8 However, there is at least

one reason why this result is not as general as it might first appear. Implicit in their

argument is the assumption of unrestricted domain. Specifically, for the result to hold the

“many” side of the market, hospitals, must be able to rank doctors in any possible order.

The literature has overlooked this condition since in many environments it is innocuous;

however, in others, such as choosing students from many grades, it may not be particularly

appropriate. If a school is choosing for one grade, it would only rank students of that grade;

it would never be the case that students of different grades would be interspersed among

its rankings. Similarly, unrestricted domain requires that it is possible that each hospital

could rank doctors in any order. This would mean the hospital could rank a doctor with

specialty A ahead of a doctor with specialty B ahead of another doctor with specialty A,

regardless of what these specialties are. However, there is a large number of specialties and

hospitals only offer a limited number of services. We doubt any individual hospital offers

every conceivable specialty, so it is unreasonable to assume that each hospital might have

any conceivable ordering of doctors.

6Rostek and Yoder (2020) conduct a similar exercise but with complementary preferences. Their domain
and the substitutes domain are unrelated (have empty intersection), while our partitionability condition
includes the latter as a special case.

7Che et al. (2019) considers a large market matching model, and shows that approximately stable
matchings exist without the substitutes condition.

8Hatfield et al. (2019) show that in the matching with contracts framework the cumulative offer process
is the unique strategy-proof and stable mechanism when three conditions on multi-unit demand side choice
function are satisfied—observable substitutes, observable size monotonicity, and non-manipulability via
contractual terms. Moreover, if the choice function of a firm does not satisfy any of these three conditions,
then there exist instances in which all other firms have unit demand choice functions such that strategy-proof
and stable mechanism fail to exist. In our setting, matching without contracts, observable substitutes and
observable size monotonicity corresponds to substitutes and size monotonicity. Hence, our discussions on
Hatfield and Kojima (2008) also hold here.
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To the best of our knowledge, ours is the first paper to introduce the ideas of partitionability,

within group substitutes, and downstream independence, and to show that these conditions

guarantee a stable assignment. Our paper was first circulated in 2020 under the title

“Partitionable Choice Functions.” Two papers show similar results: Huang (2021) introduces

the idea of unidirectional substitutes and complements. Bando and Kawasaki (2021), in a

dynamic model, introduce period-wise substitutability and future invariance. Both papers

show the existence of a stable assignment when these conditions are satisfied.

We contrast our concepts to the model of supply chain networks in Ostrovsky (2008).

First, we consider a two-sided matching model while Ostrovsky (2008) considers a model

of matching with contracts. In the latter it is known that substitutes is not a necessary

condition for the existence of a stable assignment (as pointed out by Hatfield and Kojima

(2008)). Next, our concept of partitionability identifies a common characteristic in hospitals’

preferences over the other side. In their paper this is not possible because of the non-“two-

sidedness” of networks: firms have generally different sets of trading partners. Finally,

their network structure is given exogenously, while partitions in our environment can arise

endogenously.

In terms of mechanisms, Correa et al. (2019) and Dur et al. (2022) also define sequential

variants of DA based on exogenously given grades in the school choice problem. The

parameter π associated with our SDA is instead endogenously determined by the profile

of choice functions (and there can be several). We derive general conditions on profiles of

choice functions in which stability is possible. In their environments, choice functions are

not primitives and they focus on particular multi-unit demand side “preferences” based on

priorities, sibling guarantees, etc.

Our paper is also related to those that study matching problems where both sides’ preferences

are no longer the only primitives of the model, and additional considerations arise from

real-world constraints. We mention only several here. Pathak et al. (2020) present a

theory of rationing with reservation amounts for different categories of the population;

they discuss their results in the context of vaccine allocation during the Covid-19 crisis.
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Kamada and Kojima (2015, 2017) examine the case of distributional constraints, e.g., in the

Japan Residency Matching Program, each region may have a maximum number of doctors to

ensure that rural areas have enough. Delacrétaz et al. (2019) consider the problem of refugee

resettlement, where the standard model fails to recognize characteristics, such as family size,

family make-up, languages spoken, etc., important for various quota considerations. Combe

et al. (2018) propose a new centralized teacher assignment process in France, where the initial

assignment of teachers must be taken into account. In each scenario, known mechanisms like

the DA may fail to result in desirable outcomes, or other criteria aside from stability play

key roles.

3 Model

Let M = {m1, . . . ,mk} be a finite set of medical staff. Let H = {h1, . . . , h`} be a finite set

of hospitals. Each hospital h is equipped with a choice function denoted by Ch : 2M → 2M

where Ch(M̄) ⊆ M̄ is the set of chosen staff, possibly ∅, by hospital h from menu M̄ ⊆ M .

Let C = (Ch)h∈H be the profile of hospitals’ respective choice functions. Each staff m ∈M is

equipped with a strict preference relation Pm over the set of hospitals and being unassigned,

the latter denoted by ∅; we denote weak preference by Rm. Let P = (Pm)m∈M . We define

tuple (M,H,P,C) as a two-sided matching problem. We fix the sets M and H and

represent a problem with (P,C).

A matching µ : M → H∪{∅} is a function such that each staff is matched with one hospital

in H or ∅.9 With slight abuse of notation we use µ(h) instead of µ−1(h). A mechanism

φ is a procedure which selects a matching for any problem (P,C). Let φ[P,C], φ[P,C](m),

and φ[P,C](h) be the matching selected by mechanism φ, hospital matched to staff m, and

staff matched to hospital h under problem (P,C), respectively.

Stability is a central desideratum in two-sided matching markets, shown to be important for

the survival and long-term success of an assignment system (Gale and Shapley, 1962; Roth,

9Notice that we do not restrict the number of staff, either doctor or nurse, assigned to a hospital. Instead,
each hospital determines its capacity through the choice function.
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1982; Roth and Sotomayor, 1992). Formally, a stable matching is defined as follows:

Definition 1. A matching µ is stable if

• (Individual Rationality) µ(m)Pm ∅ and Ch(µ(h)) = µ(h) for each m ∈ M and

h ∈ H;

• (No Blocking) there is no hospital h and subset of staff M̄ such that M̄ 6= µ(h),

M̄ = Ch(µ(h) ∪ M̄) and hRm µ(m) for all m ∈ M̄ .

We say a matching µ is within-group stable if it is individually rational and not blocked by

any hospital and set of staff that are all the same type.10 Notice that, stability implies within-

group stability but the reverse does not always hold. A mechanism φ is stable (within-group

stable) if it selects a stable (within-group stable) matching in any problem. A mechanism

φ is strategy-proof for medical staff if for any problem (P,C) no medical staff benefit

from misreporting her preferences, i.e., φ[P,C](m) Rm φ[P ′m, P−m, C](m) for any misreport

P ′m, and preference profile P (where P−m = (Pm̂)m̂∈M\{m}).

It is well known that existence of a stable matching is guaranteed under certain conditions

in many-to-one matching problems. The following is the standard sufficiency condition

considered in the literature (Kelso and Crawford, 1982; Hatfield and Milgrom, 2005; Hatfield

and Kojima, 2008; Roth and Sotomayor, 1992).11

Definition 2. Hospital h’s choice function Ch is substitutable if for each set of staff

M̄ ⊂M , and each pair m,m′ ∈M\M̄ ,

m /∈ Ch(M̄ ∪ {m})⇒ m /∈ Ch(M̄ ∪ {m,m′}).

That is, under a substitutable choice function a staff m rejected in a given subset of staff

M̄ ∪ {m} cannot be accepted when a superset of M̄ ∪ {m} is considered. A profile of choice

10That is, it is not blocked by any hospital h ∈ H and subset of staff M̄ ⊂ M such that each staff in M̄
belongs to a group.

11Both Hatfield and Milgrom (2005) and Hatfield and Kojima (2008) consider the matching with contracts
framework. The two-sided matching problem is the special case where there is a unique contract term for
each medical staff and hospital pair.

8



functions C is substitutable if for each h ∈ H, Ch is substitutable.12

The following is a consistency property for choice functions introduced by Aygün and Sönmez

(2013).13

Definition 3. Hospital h’s choice function Ch satisfies independence of rejected

alternatives if for each M̄ ⊆ M , and each m ∈ M , if m /∈ Ch(M̄ ∪ {m}), then

Ch(M̄ ∪ {m}) = Ch(M̄ \ {m}).

That is, removal of the rejected staff does not change the chosen set of the staff. We assume

each choice function considered in this paper satisfies independence of rejected alternatives.

Unfortunately, as mentioned in the introduction in our environment hospitals’ choice

functions may fail to be substitutable. We illustrate more formally in the following example.

Example 1. Let H = {h}, M = {d, n} where d is a doctor and n is a nurse. Suppose h only

accepts the doctor and nurse if they are present as a pair. Then, Ch({n}) = Ch({d}) = ∅

but Ch({n, d}) = {n, d}. Hence, Ch is not substitutable.14

Given the negative result in Example 1, we seek a weaker condition that guarantees the

existence of a stable matching for any problem.

3.1 A Weaker Condition than Substitutes: Partitionability

In this section, we introduce a condition on choice functions that is weaker than

substituability and guarantees existence of a stable matching for any problem. An ordered

partition π = {π1, π2, . . . , π`} of staff is a collection of labelled subsets of staff such that

πk ∩ πk′ = ∅ for any k 6= k′, and ∪k≤`πk = M . For any partition of staff, we refer to a cell

of the partition as a group. For instance, in the our medical labor market context the set of

staff can be partitioned into nurses and doctors.

12Substitutability, as well as weaker conditions, i.e., bilateral and unilateral substitutes (Hatfield and
Kojima, 2010), have been shown to be sufficient conditions in the matching with contracts model. Since in
our setting each hospital-staff pair have only one possible contract, such conditions are all the same.

13Alva (2018) shows that independence of rejected alternatives is equivalent to rationalizability.
14Notice that, hospital h’s choice function fails to be substitutable even if it accepts a doctor alone.
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Definition 4. Let π = {π1, π2, . . . , π`} be an ordered partition of the staff M . A choice

function Ch is π-partitionable if

i. (Within-Group Substitutes for π) For each subset of staff M̄ ⊂M , each group πg ∈ π,

each pair m,m′ ∈ (M \ M̄) ∩ πg,

m /∈ Ch(M̄ ∪ {m})⇒ m /∈ Ch(M̄ ∪ {m,m′}).

ii. (Downstream Independence for π) For each g < `, let Ug = π1 ∪ · · · ∪ πg denote the

staff “upstream” of πg and Og = πg+1 ∪ · · · ∪π` denote the staff downstream of πg. For

each set of staff M̄ ⊂M , g < `, and each “downstream” staff m′ ∈ Og,

Ch(M̄) ∩ Ug = Ch(M̄ ∪ {m′}) ∩ Ug.

The first condition requires no complementarity between the members of the same group.

The second condition says that the presence of downstream staff does not impact which

upstream staff are chosen.15 We also say that a profile of choice functions C is within-

group substitutes for π if each choice function in C satisfies the first condition, and

similarly with downstream independence for π for the second condition. For brevity,

we drop mention of π when the partition at hand is clear.

Definition 5. A profile of choice functions C is partitionable if there exists an ordered

partition of the staff π such that for each h ∈ H, Ch is π-partitionable.

We make two remarks on this definition.

Remark 1. Agents from the unit demand side that are in different groups can be either

complements (up to some degree) or substitutes. For example, suppose a hospital first chooses

doctors then nurses. The hospital might prefer to select nurses with the same specialties as

15This is reminiscent of the history independence assumption in Kotowski (2019) in the context of a
dynamic matching when agents are repeatedly assigned each period. Their property requires that matchings
in previous periods do not affect preferences today. Our downstream independence is the opposite—matchings
in previous/upstream groups can affect selections in the current group, but later/downstream groups cannot
affect previous selections.
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the doctors they have chosen or instead might prefer to “fill in gaps” and choose nurses

that are not in the same field. In either case, the doctors and nurses are not substitutes.

Alternatively, a hospital might have “separable” preferences over groups: the highest priority

doctors are chosen, then the highest priority nurses are chosen, with the priorities being

independent. In this case, agents across the two groups are substitutes. Finally, note that

perfect complements across groups is still not permissible: The choice function in Example

1, where either the entire “team” of the doctor-nurse pair is accepted together or not at all,

is not partitionable.

Remark 2. Partitionability need not be based an exogenous characteristic. In many

applications, there is a structure on applicants that generates a natural partition, e.g., a

doctor’s specialty or different types of medical staff. However, partitionability is well-defined

even when there are no exogenous characteristics. Given any arbitrary profile of choice

functions, there may be a partition that “rationalizes” the profile of choice functions as

partitionable.

We first show the relation between partitionability and substitutability.

Proposition 1. If a profile of choice functions is substitutable, then it is partitionable. In

contrast, a partitionable profile of choice functions is not necessarily substitutable.

3.2 Partitionability and Stability

Proposition 1 implies that partitionability is a weaker condition than substitutability. Yet,

as shown in the next theorem, it is sufficient to guarantee existence of stable matching.

Theorem 1. If a profile of choice functions C is partitionable, then for any problem (P,C),

a stable matching exists.

We prove Theorem 1 via construction. We first define a family of mechanisms used

in our proof. This family of mechanisms is parameterized by ordered partitions π =

{π1, π2, . . . , π`}—each called the Sequential Deferred Acceptance w.r.t. π (SDAπ).
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Let (P,C) be a problem, and π be an ordered partition of the medical staff such that C is

π-partitionable. Define the outcome of SDAπ as the product of the following algorithm:

Step 1: Deferred Acceptance for π1

Step 1.1: Each medical staff m ∈ π1 applies to her top choice under Pm. Let

A1(h) be the set of staff who have applied to h in this step. Each hospital

h tentatively keeps the staff in Ch(A1(h)) and rejects the staff in A1(h) \

Ch(A1(h)).

In general for each k > 1:

Step 1.k: Each medical staff m ∈ π1 applies to her top choice under Pm which

has not rejected her yet. Let Ak(h) be the set of staff who have applied to

h in this step. Each hospital h tentatively keeps the staff in Ch(Ak(h)) and

rejects the staff in Ak(h) \ Ch(Ak(h)).

Step 1 terminates when no staff in π1 is rejected. For each h ∈ H, let µ1(h)

be the set of staff tentatively kept by h at the last step.

In general, for each ` ≥ g > 1:

Step g: Deferred Acceptance for πg

Step g.1: Each medical staff m ∈ πg applies to her top choice under Pm. Let

A1(h) be the set of doctors who have applied to h in this step. Each hospital

h tentatively keeps the staff in Ch(µg−1(h) ∪ A1(h)) and rejects the staff in

A1(h) \ Ch(µg−1(h) ∪ A1(h)).16

In general for each k > 1:

Step g.k: Each medical staff m ∈ πg applies to her top choice under Pm which

has not rejected her yet. Let Ak(h) be the set of staff who have applied to h in

this step. Each hospital h tentatively keeps the staff in Ch(µg−1(h)∪Ak(h))

and rejects the staff in Ak(h) \ Ch(µg−1(h) ∪ Ak(h)).

16Note that by downstream independence, µg−1(h) is a subset of the chosen staff from µg−1(h) ∪A1(h).
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Step g terminates when no staff in πg is rejected. For each h ∈ H, let µg(h)

be the set of staff tentatively kept by h at the last step.

The Deferred Acceptance (DA) mechanism is the special case when π = {M}. In the

Appendix, we establish that the outcome of this algorithm is a stable matching, thereby

proving Theorem 1. For the rest of the paper, all omitted proofs are in the Appendix.

In Hatfield and Kojima (2010), they consider one hospital with a choice function that violates

substitutes. They show that if there is at least one more hospital and this hospital’s choice

function satisfies substitutes, then a stable matching need not exist. We will perform the

parallel exercise with partitionability and show that departure from partitionability may

result in the nonexistence of a stable matching.

Proposition 2. Let |H| ≥ 2 and |M | ≥ 2. If there is h ∈ H such that Ch is not partitionable,

then we can find a preference profile P for staff and a partitionable choice function for some

hospital h′ (with unit demand for each group) such that, regardless of the choices of the other

hospitals, at (P,C) there is no stable matching.

We conclude this section by providing another feature of SDAπ. In particular, we provide a

condition such that when hospitals’ choice functions satisfy it (in addition to partitionability),

SDAπ is immune to preference manipulation by medical staff.

Definition 6. Hospital h’s choice function Ch satisfies the law of aggregate demand if

M ′ ⊂M ′′ implies |Ch(M ′)| ≤ |Ch(M ′′)|.

That is, when a hospital takes additional staff into consideration, the number of chosen staff

weakly increases. A profile of choice functions C satisfies the law of aggregate demand if

for each h ∈ H, Ch satisfies the law of aggregate demand. Hatfield and Milgrom (2005) show

that when the multi-unit demand side’s choice functions satisfy the law of aggregate demand

and substitutability conditions, then the DA mechanism cannot be manipulated by agents

on the unit demand side. In Proposition 3 we show that SDAπ cannot be manipulated when

hospital choice functions are partitionable and satisfy the law of aggregate demand.
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Proposition 3. If a profile of choice functions C is partitionable and satisfies the law of

aggregate demand, then SDAπ is strategy-proof for medical staff.

The statement also holds for a relaxation of the law of aggregate demand where we further

require that all staff in M ′′ \M ′ are in the same group. By partitionability, at Step k the

assignment is independent of agents in Step k′ for k′ > k, and the result follows.

4 Extension: Pure Complements

Consider the problem of matching hospitals and medical staff composed of doctors and

nurses. Let D be the set of doctors, N be the set of nurses, and M = D ∪ N . A hospital

wishes to hire a doctor only if it can support her with α ∈ N nurses, and similarly, to hire a

nurse only to support a doctor.17

Formally, let a ratio choice function Ch(·) satisfy within-group substitutability and be such

that for each M ′ = D′ ∪N ′ ∈ 2M ,

• (α Nurses to Doctor Ratio) α|Ch(M ′) ∩D| = |Ch(M ′) ∩N |

• (Doctor Selection Partial Independence) for each N̄ ⊆ N with |N̄ | = |N ′|, Ch(D′ ∪

N ′) ∩D = Ch(D
′ ∪ N̄) ∩D.

A ratio choice function is not substitutable. If α = 1, then we have the scenario from

Example 1: it is possible that Ch({d}) = Ch({n}) = ∅ while Ch({d, n}) = {d, n}. Further

note that it is not partitionable as it fails the downstream independence condition (and hence

we refer to it as “partial” independence). Recall that the latter requires the availability of

downstream staff to not affect the selection of upstream staff. Whether we consider doctors

or nurses first in the ordered partition, adding the second agent causes the first agent to be

chosen when they were rejected before. Thus, even with its built-in structure, a ratio choice

function exhibits “pure complements” choice behavior and fails partitionability.

17Our result in this section still holds if the number of nurses needed to support a doctor differs across
doctors.
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Despite this, we provide conditions on the domain of problems where our results can still

be useful. Say that all nurses are acceptable to hospital h if for each M ′ ⊆ M , and each

N̄ ⊆ N , if |N̄ | = α|Ch(M ′) ∩ D|, then N̄ ⊆ Ch((Ch(M
′) ∩ D) ∪ N̄). Any set of chosen

nurses can be swapped with another set of nurses of the same cardinality. Consider the case

where nurses are not in shortage and find all hospitals acceptable. In this scenario, if we run

the SDA with doctors selected first, then these conditions guarantee that eventually each

hospital h will have a sufficient number of nurses applying to h. A hospital will then not

regret hiring any doctor, as it can find α nurses for each.

SDA with Placeholders:

Step 1. (Doctor Assignment) Use the DA algorithm, and in each substep k:

i. Each doctor applies to her most preferred hospital that has not rejected

her yet.

ii. Let Dk
h be the set of doctors applying to hospital h in substep k. Each

hospital h tentatively keeps doctors in Ch(D
k
h ∪N) and rejects the rest

of the doctors in Dk
h.

The DA algorithm terminates when no doctor is rejected. When it

terminates, we assign only the chosen doctors to the hospitals. Let Dh

be the set of doctors assigned to hospital h at the end of Step 1.

Step 2. (Nurse Assignment) Use the DA algorithm, and in each substep k:

i. Each nurse applies to her most preferred hospital that has not rejected

her yet.

ii. Let Nk
h be the set of nurses applying to hospital h in substep k. Each

hospital h with |Nk
h | > α|Dh| tentatively keeps nurses in Ch(Dh ∪Nk

h )

and rejects the rest of the nurses in Nk
h . Each hospital h with |Nk

h | ≤

α|Dh| tentatively keeps all nurses in Nk
h .

The DA algorithm terminates when no nurse is rejected. The nurses

applying to hospital h in the last substep and the doctors in Dh are assigned

to hospital h.
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In Step 1, we run DA as if each hospital has nurses available; the hospitals use these

“placeholder” assignments to make their doctor selections. After Step 2, these placeholder

assignments are discarded, and replaced with the actual assignments.

It is straightforward to see that SDA with Placeholders works as desired when there is

no nurse scarcity. As with the SDA, it selects a stable matching. Furthermore, any ratio

choice function satisfies the law the aggregate demand, resulting in the mechanism’s non-

manipulability by the medical staff. Arguments parallel exactly the proofs of Theorem 1 and

Proposition 3. We summarize this finding next.18

Theorem 2. Let (P,C) be a problem such that

i. C is a profile of ratio choice functions,

ii. |N | ≥ α|D|, and

iii. each nurse finds each hospital acceptable and each hospital finds all nurses acceptable.

Then, for any such problem, SDA with Placeholders selects a stable matching, and is strategy-

proof for the medical staff.

Theorem 2 shows that we can achieve stability when doctors are scarce relative to nurses.

We illustrate how the statement fails if nurses are scarce.19

Example 2. Let H = {h1, h2}, N = {n1, n2, n3}, D = {d1, d2}, and α = 3. In this problem,

we have |N | = 3 < 6 = α|D|. Each hospital has a ratio choice function and would hire

d1 with α nurses over d2 with the same. Preferences of doctors are as follows: h1 Pd1 h2

and h2 Pd2 h1. Preferences of each nurse n is h1 Pn h2. Then, SDA with Placeholders will

assign: n1, n2, n3 and d1 to h1, and d2 to h2. This assignment is not stable because it is not

individually rational for h2.

18For completeness, we provide the proof of Theorem 2 in the Appendix.
19A similar problem occurs if we attempt to reverse the order of SDA with Placeholders and assign nurses

first by permuting the roles of the two groups.
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5 Conclusion

Substitutability is sufficient to guarantee the existence of a stable assignment. However,

partitionability is also sufficient and a weaker condition than substitutability. Therefore, we

conclude that substitutability is not necessary for the existence of a stable assignment.

If one choice function violates substitutes, we can always find a choice function that satisfies

substitutes but where a stable assignment need not exist. We showed the analagous

statement with partitionability. Again, since partitionability is a weaker condition than

substitutability, we conclude that even under this interpretation of necessity, substitutability

is not necessary for the existence of an equilibrium.
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Appendix: Proofs

Proof of Proposition 1. Let π be the trivial partition consisting of all staff, i.e. π = {M}.

Then, a substitutable choice function Ch is π-partitionable. Hence, C = {Ch1 , . . . , Ch`} is

partitionable.

Next, we prove the second part of the statement by means of example. Let H = {h},

π = {π1, π2}, π1 = {d} and π2 = {n}. That is, M = {d, n}. Here, d is a doctor and n is a

nurse. We define Ch as follows:

a. Select n only when d is also applying.

b. Select d whenever she is applying.

Such a choice function can be interpreted as follows: A doctor can do a job without a nurse.

However, in order a nurse to help a patient, we need a doctor. A doctor and a nurse together

work more efficiently.

First notice that, Ch is not substitutable: n /∈ Ch({n}) = ∅ but n ∈ Ch({d, n}) = {d, n}.

However, Ch is π-partitionable: d is never rejected when she applies and n in π2 is

accepted only when d in π1 applies. That is, both within-group substitutes and downstream

independence are satisfied.

Proof of Theorem 1. We show that if a profile of choice functions is π-partitionable, then

the SDAπ produces a stable matching for any staff preference profile.

Let (P,C) be a problem, and π = (π1, . . . , π`) be an ordered partition of the medical staff

such that C is π-partitionable. Let the SDAπ prescribe µ for this problem. Since the choice

function for each hospital h is π-partitionable, µg(h) ⊆ µg+1(h) for any g ∈ {1, 2, . . . , `− 1}.

Hence, µ(h) = µ`(h) for each h ∈ H.

We now show that µ is stable for this problem. We first consider individual rationality.

Since staff only apply for the acceptable hospitals, µ(m) Rm ∅ for all m ∈ M . Moreover,

independence of rejected alternatives implies that for each h ∈ H, Ch(µ`−1(h) ∪ Ak̄(h)) =
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Ch(µ`(h)) = µ`(h) = µ(h) where k̄ is the termination step of the DA for π`. Hence, µ is

individually rational.

Next, we show µ cannot be blocked. Suppose by contradiction that there is a hospital h and

a set of staff M̄ ⊆ M that block µ. So M̄ \ µ(h) 6= ∅ and M̄ ⊆ Ch(µ(h) ∪ M̄). We prove

this cannot be true by using induction. Let M̄ ∩ πg = M̄ g and µ(h) ∩ πg = µg(h) for each

g ∈ {1, 2, . . . , `} and h ∈ H. We start with g = 1. If there exists m ∈ M̄1 \ µ1(h), then by

independence of rejected alternatives and partitionability, m /∈ Ch(µ(h)∪M̄)—contradicting

the assumption that M̄ blocks µ. Hence, M̄1 ⊆ µ1(h) ⊆ µ(h). By independence of rejected

alternatives and downstream independence, M̄1 ⊆ Ch(µ(h) ∪ M̄). Suppose M̄ g′ ⊆ µ(h) for

all g′ < ḡ ≤ `. That is, M̄ g′ ⊆ Ch(µ(h)∪M̄) for all g′ < ḡ ≤ `. If there exists m ∈ M̄ ḡ\µḡ(h),

then by independence of rejected alternatives and partitionability, m /∈ Ch(µ(h)∪M̄). Hence,

M̄ ḡ ⊆ µḡ(h). Therefore, we have M̄ ⊆ µ(h) and therefore Ch(µ(h) ∪ M̄) = Ch(µ(h)) =

µ(h).

Proof of Proposition 2. Fix any partition π. Since Ch is not partitionable, Ch is not π-

partitionable. The definition of partitionability includes two independent properties.

Within-Group Substitutes: Suppose Ch violates within-group substitutes. That is, there

is a group πg, and staff {m, j} ⊆ πg and M̄ ⊂ M such that m /∈ Ch(M̄ ∪ {m}) but

m ∈ Ch(M̄ ∪{m, j}). We will show that j ∈ Ch(M̄ ∪{m, j}). Otherwise, Ch(M̄ ∪{m, j}) =

Ch(M̄ ∪ {m}) (by the independence of rejected alternatives), and since m /∈ Ch(M̄ ∪ {m}),

m 6∈ Ch(M̄ ∪ {m, j}), a contradiction. Therefore, {m, j} ⊆ Ch(M̄ ∪ {m, j}).

We will construct a partitionable choice function for some hospital h′. Specifically, for

any set M ′ ⊆ M \ {m, j}, let Ch′(M
′) = ∅, Ch′(M ′ ∪ {j}) = {j} and Ch′(M

′ ∪ {m}) =

Ch′(M
′ ∪ {m, j}) = {m}.

Let M∗ = Ch(M̄ ∪ {m, j}) recalling that {m, j} ⊆ M∗. Let M̃ = Ch(M̄ ∪ {m}). By

irrelevance of rejected alternatives, M̃ = Ch(M̄ ∪{m}) = Ch(M̃ ∪{m}). We now define staff
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preferences as follows:

Pk :=



h, h′, ∅ k = m

h′, h, ∅ k = j

h, ∅ k ∈ M̄ \ {m, j}

∅ k 6∈ M̄ ∪ {m, j}

Suppose by contradiction that there is a stable matching µ at this problem. Then, µ(k) = ∅

for all k /∈ M̄ ∪ {m, j} and µ(h′) ⊆ {m, j}. Otherwise, µ is blocked by an individual staff or

hospital. If µ(h′) = ∅, then h′ and j block µ. Hence, |µ(h′)| = 1. If µ(h′) = m, then staff

in M∗ and h block µ. If µ(h′) = j, then µ(m) = h. Otherwise, m and h′ block µ. Since

m /∈ Ch(M̃ ∪ {m}) = M̃ , M̃ \ µ(h) 6= ∅. Hence, staff in M̃ and h block µ. In any case, µ is

blocked.

Downstream Independence: Suppose Ch violates downstream independence. That is, for

some group πg, M̄ ⊂M , and j ∈ Og \ M̄ , we have Ch(M̄) ∩ Ug 6= Ch(M̄ ∪ {j}) ∩ Ug.

Case 1: A downstream doctor causes an upstream staff to be rejected. Formally,

suppose m ∈ Ch(M̄)∩Ug but m /∈ Ch(M̄ ∪{j})∩Ug. Similar to the argument in the within-

group substitutes section, irrelevance of rejected alternatives implies that j ∈ Ch(M̄ ∪ {j}).

For hospital h′, define Ch′ as the following: for any I ′ ⊆M \{m, j}, Ch′(I ′) = Ch′(I
′∪{j}) =

∅, Ch′(I ′ ∪ {m, j}) = {m, j}, and Ch′(I
′ ∪ {m}) = {m}. Note that even though Ch′ violates

substitutes, it is π-partitionable if m is in an earlier group than j. Let M∗ = Ch(M̄ ∪ {j})

recalling that j ∈ M∗. By irrelevance of rejected alternatives, Ch(M̄ ∪ {j}) = Ch(M
∗). We

now define staff preferences as follows:

Pk :=



h, h′, ∅ k = m

h′, h, ∅ k = j

h, ∅ k ∈ M̄ \ {m, j}

∅ k 6∈ M̄ ∪ {m, j}
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Suppose by contradiction that there is a stable matching µ. Then, µ(k) = ∅ for all k /∈(
M̄ ∪ {m, j}

)
. If µ(m) = h′, then µ(j) = h′ or else {m, j} and h′ block µ. But if µ(m) =

µ(j) = h′, then µ(h) 6= Ch(M̄) and staff in Ch(M̄) and h block µ. If µ(m) = ∅, then m and

h′ block µ. Therefore, µ(m) = h and µ(h) 6= M∗. In this case, µ(j) 6= h′ as j /∈ Ch′({j}).

Moreover, by irrelevance of rejected alternatives of Ch and individual rationality of µ, M∗ *

µ(h) as m /∈M∗ = Ch(M̃ ∪ {j}) for any M̃ ⊆M such that M∗ ⊆ M̃ ⊆ M̄ . Hence, the staff

in M∗ and h block µ. In any case, µ is blocked.

Case 2: A downstream doctor causes an upstream staff to be accepted. Formally,

suppose m /∈ Ch(M̄ ∪ {m}) ∩ Ug but m ∈ Ch(M̄ ∪ {m, j}) ∩ Ug. By irrelevance of rejected

alternatives, {m, j} ⊆ Ch(M̄ ∪ {m, j}). Notice that Ch violates the substitutes condition.

We will construct a partitionable choice function for some hospital h′. Specifically, for

any set M ′ ⊆ M \ {m, j}, let Ch′(M
′) = ∅, Ch′(M ′ ∪ {j}) = {j} and Ch′(M

′ ∪ {m}) =

Ch′(M
′ ∪ {m, j}) = {m}.

Let M∗ = Ch(M̄ ∪ {m, j}) recalling that {m, j} ⊆ M∗. Let M̃ = Ch(M̄ ∪ {m}). By

irrelevance of rejected alternatives, M̃ = Ch(M̄ ∪ {m}) = Ch(M̃ ∪ {m}). We now define

doctor preferences as follows:

Pk :=



h, h′, ∅ k = m

h′, h, ∅ k = j

h, ∅ k ∈ M̄ \ {m, j}

∅ k 6∈ M̄ ∪ {m, j}

Suppose by contradiction that there is a stable matching µ. Then, µ(k) = ∅ for all k /∈(
M̄ ∪ {m, j}

)
and µ(h′) ⊆ {m, j}. Otherwise, µ is blocked by an individual staff or hospital.

If µ(h′) = ∅, then h′ and j block µ. Hence, by individual rationality, |µ(h′)| = 1. If µ(h′) = m,

then µ(h) 6= M∗ and doctors in M∗ and h block µ. If µ(h′) = j, then µ(m) = h. Otherwise,

m and h′ block µ. Since m /∈ Ch(M̃ ∪{m}) = M̃ , µ(h) 6= M̃ . By individual rationality of µ,

µ(h) ⊆ M̄ ∪ {m}, and so µ(h)∪ M̃ ⊆ M̄ ∪ {m}. By independence of irrelevant alternatives,
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Ch(M̄ ∪ {m}) = Ch(µ(h) ∪ M̃) = M̃ . Hence, staff in M̃ and h block µ. In any case, µ is

blocked.

Proof of Proposition 3. Consider an arbitrary problem (P,C). The SDAπ mechanism

assigns each partition πk in Step k to the hospitals. Downstream independence implies

that staff in πk cannot affect the assignment determined in earlier steps. Hence, by Hatfield

and Milgrom (2005), since hospitals’ choice function satisfies within-group substitutes and

the law of aggregate demand, in any Step k staff in πk cannot benefit from misreporting their

preferences over hospitals and being unassigned option. As a result, SDAπ is strategy-proof

for medical staff.

Proof of Theorem 2. First, when Conditions i and iii are satisfied the SDA with

Placeholders selects a well-defined matching, i.e., no medical staff is assigned to more than

one hospital. In particular, in Step 1 no doctor is applying to multiple hospitals at the

terminal substep; in Step 2, no nurse is applying to multiple hospitals at the terminal substep.

In Step 2, Condition ii ensures that each hospital h which has been assigned |Dh| doctors

will end up with α|Dh| nurses. In particular, in any substep of Step 2, hospital h rejects a

nurse only if more than α|Dh| nurses has applied to it. Conditions i and ii and the proof of

Theorem 1 thus guarantee that the outcome obtained at the end of Step 2 is stable.

For each hospital h, choice function Ch satisfies the law of aggregate demand. Hence,

Conditions i−iii and the proof of Proposition 3 implies that no medical staff can manipulate

SDA with Placeholders.
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